Loading...
13080120CITY OF CUPERTINO BUILDING PERMIT BUILDING ADDRESS: 19050 PRUNERIDGE AVE CONTRACTOR: PERMASTEELISA PERMIT NO: 13080120 NORTH AMERICA CORP OWNER'S NAME: CAMPUS HOLDINGS INC 123 DAY HILL RD DATE ISSUED: 08/15/2013 OWNER'S PHONE: 4089961010 WINDSOR, CT 06095 PHONE NO: (860) 298-2000 ❑ JOB DESCRIPTION: RESIDENTIAL El COMMERCIALS LICENSED CONTRACTOR'S DECLARATION License Class Ci/'�n6 Lie. # ?/JrlO� MOCK UP OF VERTICAL GLAZING AND SHADING Contractor CANOPY I hereby affirm that I am licensed under the provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business & Professions Code and that my license is in full force and effect. I hereby affirm under penalty of perjury one of the following two declarations: lVirave and will maintain a certificate of consent to self -insure for Worker's ompensation, as provided for by Section 3700 of the Labor Code, for the Sq. Ft Floor Area: Valuation: $10000 performance of the work for which this permit is issued. I have and will maintain Worker's Compensation Insurance, as provided for by Section 3700 of the Labor Code, for the performance of the work for which this APN Number: 31606033.00 Occupancy Type: permit is issued. APPLICANT CERTIFICATION I certify that I have read this application and state that the above information is PERMIT EXPIRES IF WORK IS NOT STARTED correct. I agree to comply with all city and county ordinances and state laws relating WIT]]IINtOAYS OF PERMIT ISSUANCE OR to building construction, and hereby authorize representatives of this city to enterupon the above mentioned property for inspection purposes. (We) agree to save 180DMLAS ALLED INSPECTION.indemnify and keep harmless the City of Cupertino against liabilities, judgments, costs, and expenses which may accrue against said City in consequence of the 3granting of this permit. Additionally, the applicant understands and will complyIssued by: Date: with all non -point source regulations per the Cupertino Municipal Code, Section 41 9.18. laa RE -ROOFS: Q� Signature Date J All roofs shall be inspected prior to any roofing material being installed. If a roof is installed without first obtaining an inspection, I agree to remove all new materials for inspection. ❑ OWNER -BUILDER DECLARATION Signature of Applicant: Date: I hereby affirm that I am exempt from the Contractor's License Law for one of the following two reasons: ALL ROOF COVERINGS TO BE CLASS "A" OR BETTER I, as owner of the property, or my employees with wages as their sole compensation, will do the work, and the structure is not intended or offered for sale (Sec.7044, Business & Professions Code) I, as owner of the property, am exclusively contracting with licensed contractors to HAZARDOUS MATERIALS DISCLOSURE construct the project (Sec.7044, Business& Professions Code). I have read the hazardous materials requirements under Chapter 6.95 of the California Health & Safety Code, Sections 25505, 25533, and 25534. I will I hereby affirm under penalty of perjury one of the following three maintain compliance with the Cupertino Municipal Code, Chapter 9.12 and the declarations: Health & Safety Code, Section 25532(a) should I store or handle hazardous I have and will maintain a Certificate of Consent to self -insure for Worker's material. Additionally, should I use equipment or devices which emit hazardous Compensation, as provided for by Section 3700 of the Labor Code, for the air contaminants as defined by the Bay Area Air Quality Management District I performance of the work for which this permit is issued. will maintain compliance with the Cupertino Municipal Code, Chapter 9.12 and I have and will maintain Worker's Compensation Insurance, as provided for by the Health & Safety Code, Sections 25505 25533, a 5534. Section 3700 of the Labor Code, for the performance of the work for which this Owner or authorized agent: Date. permit is issued. I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the Worker's Compensation laws of California. If, after making this certificate of exemption, I CONSTRUCTION LENDING AGENCY become subject to the Worker's Compensation provisions of the Labor Code, I must I hereby affirm that there is a construction lending agency for the performance of forthwith comply with such provisions or this permit shall be deemed revoked. work's for which this permit is issued (Sec. 3097, Civ C.) Lender's Name APPLICANT CERTIFICATION Lender's Address I certify that I have read this application and state that the above information is correct. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city to enter upon the above mentioned_ property for inspection purposes. (We) agree to save indemnify and keep harmless the City of Cupertino against liabilities, judgments, ARCHITECT'S DECLARATION costs, and expenses which may accrue against said City in consequence of the I understand my plans shall be used as public records. granting of this permit. Additionally, the applicant understands and will comply with all non -point source regulations per the Cupertino Municipal Code, Section Licensed Professional 9.18. Signature Date CUPERTINO CONSTRUCTION PERMIT APPLICATION COMMUNITY DEVELOPMENT DEPARTMENT • BUILDING DIVISION 10300 TORRE AVENUE • CUPERTINO, CA 95014-3255 (408) 777-3228 • FAX (408) 777-3333 • building(a)cupertino.org n NF.W C ONSTRI ICTiON n ADDITION n ALTERATION / Ti n REVISION / DEFERRED ORIGINAL PERMIT # PROJECTADDRESS � o s� ,Q� � I j' n .D /� f, /,. yjr APN #�. OWNERNAME Qfp jg PHONE ,O� n� /O/O 7Q E-MAIL STREET ADDRESS/ TAJF(/ v ! T6 1-60 ]A r c -T , �(y ,/ ^ a L bl wPHONE "+ 7 (,,%,J'I' FAX CONTACT 3 E b- G� C� L&,& l P o (� 3 M IL tG �- PERm,9sr 1 sA�Ro��, STREET ADDRESS s7r6&7 Cl Y, fr P �� /� FAX 1e k I r� ❑ OWNER ❑ OWNER -BUILDER ❑ OWNERAGENT CONTRACTOR ❑ CONTRACTOR AGENT ❑ ARCHITECT ❑ ENGINEER ❑ DEVELOPER ❑ TENANT CONTRACFORNAI� LICE SE1Mq�L R L]�E[�SE YPE BUS. LIC# COjA`/rrJ .�NA •{/1+�Cf�GR"lit S�V���/1C�1�vU�.W FAX STREET ADDRESS / C S P �I / o Le- b PNE�� 3 ARCHITECT/ENGINEER NAME LICENSE NUMBER BUS. LIC # COMPANY NAME E-MAIL FAX STREET ADDRESS CITY, STATE, ZIP PHONE AA DESCRIPTION OF WORK D pe, v/ or — EXISTING USE PROPOSED USE CONSTR TYPE # STORIES 1 USE TYPE OCC. SQ.FT. VALUATION ($) EXISTG NEW FLOOR DEMO TOTAL AREA AREA AREA NErAREA BATHROOM KITCHEN OTHER REMODEL AREA REMODEL AREA REMODEL AREA PORCH AREA DECK AREA TOTAL DECK/PORCH AREA GARAGE AREA: DETACH []ATTACH i #DWELLING UNITS: IS ASECOND UNIT ❑YES SECONDSTORY ❑YES t/ BEING ADDED? []NO ADDITION? []NO PRE -APPLICATION ❑ YES IF YES, PROVIDE COPY OF IS THE BLDG AN ❑ YES iREC VE $Y Prty� _,�! VALUATION: PLANNING APPL # []NO PLANNING APPROVAL LETTER EICHLER HOME? ❑ NO By my signature below, I certify to each of the following: I am the property owner or ayt ore agent to act on the property owner's behalf. I have read this application and the information I have provided is correct. I have read the Description f r nd verify it is accurate. I agree to comply with all applicable local ordinances and state laws relating to buildin t lion. I auth ' e representatives of rtino to enter the above -identified pr perty for inspection purposes. Signature of Applicant/Agent: Date: �� /211 SUPPLEMENTAL INFORMATION REQUIRED x i a> ` iozimuy fI cicl YPE 4k. s%1P n, New SFD or Multifamily dwellings: Apply for demolition permit for € +rt r T /yOUNTERa� ry } ❑iiBUILDINGPLAN�REVIESj aI a M14, existing building(s). Demolition permit is required prior to issuance of buildm eptt JW f41) I stFxs I� permit for new building. ExPREss fi{ x ❑ rLArININcrLnrritEyiEw *r ' "® Commercial Bldgs: Provide a completed Hazardous Materials Disclosure ❑` sTAxDnRn PUBLicwoRxs fi _ form if any Hazardous Materials are being used as part of this project. OR, § (] �LARGEP =, 1 rT y� # r ❑;FIRE DEPT Copy of Planning Approval Letter or Meeting with Planning prior to ❑ SANrrARYSEwERDISTRICT submittal Of Building Permit application. MAJOR *;. , , m r ❑ EN VHtONMENTAL'HEALTH ,{_= .. ;�.'� Tr7 BldgApp_2011.doc revised 06/2III ] CITY OF CUPERTINO FEW FEE ESTIMATOR — BUILDING DIVISION 19050 Pruneridge Ave DATE: 08/15/2013 REVIEWED BY: Sean lialADDRESS: APN: BP#: "VALUATION: $10,000 PERMIT TYPE: Building Permit PLAN CHECK TYPE: Alteration / Addition / Repair PRIMARY USE: Commercial Building PENTAMATION PERMIT TYPE: 1GENCOC; WORK Mock -Up of vertical glazing and shading canopy. SCOPE 1'1'11111'1'1�1-N:: " Elm :tech. flan ('17eck kfech_ Permit Fee: Other ;llech. Insp. Phimb. Plan ('peek Plumb. Permit Fee: Other Plumb Insp. Elec. Plan (.heck Elec. Permit Fee: Other flee. Insp. Tech. Insp_ Fee: I Plumb. Insp. Fee: I h1ec. Insp. Fee: NOTE: This estimate does not include fees due to other Departments (Le. Planninz. Public Works. Fire, Sanitary Sewer District, School rlictrint ntn 1 Thom fnoc pro hncod nn tho nroliminnru mfnrmntinn availnhlo and pro nnly nn octimato_ Cowart tho Dont fnr addn'I inin_ FEE ITEMS (Fee Resolution 11-053 Eff 711112) FEE QTY/FEE MISC ITEMS Plan Check Fee: Hourly Only? ® Yes Q No $0.00 0 hours Plan Check, Hourly $139.00 1STPLNCK Suppl. PC Fee: Reg. ®OT 0.0 hrs $0.00 PME Plan Check: $0.00 Permit Fee: Hourly Only? 0 Yes Q No $0.00 Suppl. Insp. Fee-.0 Reg. ® OT 0 0 hrs $0.00 PME Unit Fee: $0.00 PME Permit Fee: $0.00 Construction Tax: A.clrninistrative .h7ee: 0 Work Without Permit? ® Yes (E) No $0.00 Advanced Planning Fee. $0.00 hours Inspections $278.00 ISTINSP 7 Inspection, Hourly 0 Travel Documentation Fees: Strong Motion Fee: IBSEISMICO $2.10 Select an Administrative Item Bldg Stds Commission Fee: IBCBSC $1.00 $3.10 $417.00 $420.10 Revised: 07/01 /2013 w in I M pt ol ` �: ���� / / \�\� � � \ /� ° � /� \ �� . . <` y � Detail 2 — Prototype detail site logistics plan Benchmark frame: Scale 1:20 Lifting beam for lifting in the glass pane \ attached" the sane hook e..,.n..H1rx.9`anee Shackle S/6' (SWL 3.25to) 305 [iT4'Me"1 I+7 Wing strap for liPong Lilting strap for lifting the glass pane —� the glass pane, I xssw N• W`_ Glass supportl (4"xiNk) to _ prev. contact glass -frame .�'. -....._._,. (glued wframe at same .. - '" Position as #t bottom side) - rises, support (4"x1}'rk) to _ pre'. contact glass - frame - I I Glass support Glass support I4'x1)'xjlg") "-..__ Glass support 300 300 (B x1}'�') ... -�'.� to prev.,canted gtass - frame (6"x1p)") j11"/,il I bkS BSMfN' 11130 _ _ \ DETAIL "C" 10e0 \ xss ss400'N 24U DETA" DETAIL "A": Scale 1:2 203 Is" `DETAIL "B" DETAIL "C": Scale 1:5 1 no. steel frame to be fabricated Material: S355 Coating: RAL 7024 (dark grey) DETAIL "B": II Dart — = , I_L_ 1_i Scale 1:2 — 1 I I I I I I i Shcwn sealed \ �\ i 1-1 - I { ! I I HS6evIrIN I Installation sequence Poshloning of the glass frame and fixing to the ground by 1 Ono. HILTI — _. __ — Kvnk hdl TZ 112"xT • Lnlg of the glass pane (weight -21 Wkg) off the transport rack by the use of 2 suitable lilting straps suspended to a lifting beam attached to the crane hook _ - Lowering the glass pe"' inside the lateral tidlannel and positioning II., - - Installations oftheellatteral shims for positioning of the glass pane I g ^ I I 1. l Step 2: Block for positioning Of temporary canopy 31a' x 1314" ti— m aFiiro 5 I xss ewnn• Iz 20 116 g °�14 3/8' -I 20 Edge of glass pane — Glass shim III I 1 F L CUPERTIN - _- LPongetrap Building Depatne t 4, Edge protedion I Edge of glass pa- S 2013 -- --------- REVIEVti�E>) FQ ----------------- C E GOMPTU — ------ — cE------ --- Reviewed By^° 340 p - S HIS-- ---- ----—br--------- — ---------------- i -------------------- — — -- ---— — — — ----- -- — — —------------- -- — — I-----------N9etxknlN• I A C - installation of the top profile - Inetah= of Me lateral shims fi of the glass pane - Sealing of the gaps around the { x 4no. HILTI Kwik bole TZ 1/2' x 7" MguR$2013 03 m.0$t3 213a to rea Revision —rding l implementation In the field IkamN 0m.or.k zus Rewoneomftvw_ _F�Pl W.M(1.ar. alM&M13) 2 I(etra 01 os.06.1324'15 RevLvo —dingcamanls FFP;0mensloncanpedbirh awn 23.OS.t3I135 v00 e. xdtrx "P� DESCRIPTION IIIII GARTNER 1mM G"Mw GmaH V �� �� n �>nakmNwmniwnan n. u swlawae"Mwemwr DawaaWn'ron +Iu�wunwY.'�h. Apple Campus 2 Project Cupertino, CA Vertical Facade & Shading Canopy 08.02A FOSTER +PARTNERS Benchmark glass pane - Inner radius Steel frame for glass pane - overview+ details 71 mo cr 1:20; 1:5; 1:2 sent 212190776 w k k 212190776 Apple Campus 2Project; Cupertino CA 08.02A Vertical Glazing and Shading Canopy Foster + Partners Structural Report Apple Campus 2 Project; Cupertino CA 08.02A Vertical Glazing/Shading Canopy Foster + Partners Benchmark Mockup Report Name: Project Number: Document Name: Status: Revision: Date: Author: Vertical Glazing 212190776 212190776-ST-MOBM-0001-Rev00.doc 00 August 05, 2013 Harald Elbert Structural Department I Josef Gartner GmbH Josef Gartner USA A division of Permasteelisa North America Corp. 321 North Clark Street, Suite 2410 Chicago, IL 60654 Tel.: +1 (847) 225 8133 1 Fax: +1 (847) 225 7881 GARTNER Q�pFE55ipN�� R.cc UJ ,C721 �OF CAUF� August 5, 2013 CUPERTINO �. 60 Building Department 1 F AW 2013 REVIEWED FOR CODE COMPLIANCE Reviewed By: rA, r lll� Josef Gartner GmbH GartnerstraBe 20 D-89423 Gundelringen August 2013 Telefon +49 9073 84-0 Page 1 of 11 Telefax: +49 9073 84-2100 212190776 Apple Campus 2Project; Cupertino CA 08.02A Vertical Glazing and Shading Canopy Foster + Partners Josef Gartner GmbH Gartnerstralle 20 D-89423 Gundelfingen I Germany Fon: +49 9073 84 2228 Fax: +49 9073 84 1228 @: Harald.Elbert@Josef-Gartner.de Josef Gartner USA A division of Permasteelisa North America Corp. 321 North Clark Street, Suite 2410 Chicago, IL 60654 Tel.: +1 (847) 225 8133 1 Fax: +1 (847) 225 7881 August 2013 Page 2 of 11 GARTNER Josef Gartner GmbH GartnerstralIe 20 D-89423 Gundelfingen Telefon +49 9073 84-0 Telefax: +49 9073 84-2100 GARTNER 212190776 Apple Campus 2Project; Cupertino CA 08.02A Vertical Glazing and Shading Canopy Foster + Partners Structural Report 1. Benchmark Mockup................................................................................. 4 1.1. Load assumption.................................................................................... 5 1.1.1. Dead Load........................................................................................... 5 1.1.2. Wind Load for vertical Glazing.................................................................. 5 1.1.3. Seismic Load........................................................................................ 6 1.1.4. Max Utilization of Steel Sections............................................................... 8 1.1.5. Max stresses in glass............................................................................. 9 1.1.6. Hilti Anchor Kwik Bolt TZ CS %2 (3 %)..................................................10 Josef Gartner USA A division of Permasteelisa North America Corp. 321 North Clark Street, Suite 2410 Chicago, IL 60654 Tel.: +1 (847) 225 8133 1 Fax: +1 (847) 225 7881 August 2013 Page 3 of 11 Josef Gartner GmbH GartnerstraBe 20 D-89423 Gundetfingen Telefon +49 9073 84-0 Telefax: +49 9073 84-2100 L7 GARTNER 212190776 Apple Campus 2Project; Cupertino CA.g 08.02A Vertical Glazing ; and Shading Canopy Foster + Partners 1. Benchmark Mockup This document comprises the calculations of the Benchmark Mockup for the project Apple Campus 2. We assume that the Mockup will be installed only a few weeks! lomelnc Calculation will be done with RFEM4 Filename: BechnmarkGestell -V3 Dowel See Appendix 1 212190776-ST-MOBM-AO01-REV00 Josef Gartner USA Josef Gartner GmbH A division of Permasteelisa North America Corp. GartnerstralIe 20 321 North Clark Street, Suite 2410 D-89423 Gundelfingen Chicago, IL 60654 August 2013 Telefon +49 9073 84-0 Tel.: +1 (847) 225 8133 1 Fax: +1 Page 4 of 11 Telefax: +49 9073 84-2100 (847) 225 7881 GARTNER 212190776 Apple Campus 2Project; Cupertino CA 08.02A Vertical Glazing and Shading Canopy Foster + Partners 1.1. Load assumption 1.1.1. Dead Load Aluminum: Steel / Stainless Steel: Glass: y = 2700 kg/m3 = 169 pcf y = 7850 kg/m3 = 490 pcf y = 2500 kg/m3 = 156 pcf Glass weight 25*0,025*10.8e3.5=23.625kN Deadload of steel and glass will be calculated by Software RFEM4 1.1.2. Wind Load for vertical Glazing Analysis assumes the maximum wind load used on the actual building facade Reference: [ RCS 15 ] Josef Gartner - Structural Report - Design Criteria Design pressures Pressure Load p = 1.05 kPa 21.9 psf Suction Load p = -0.8 kPa -16.7 psf Josef Gartner USA A division of Permasteelisa North America Corp. 321 North Clark Street, Suite 2410 Chicago, IL 60654 Tel.: +1 (847) 225 8133 1 Fax: +1 (847) 225 7881 Josef Gartner GmbH GartnerstralSe 20 D-89423 Gundelfingen August 2013 Telefon +49 9073 84-0 Page 5 of 11 Telefax: +49 9073 84-2100 IIIII GARTNER 212190776 Apple Campus 2Project; Cupertino CA 08.02A Vertical Glazing and; Shading Canopy Foster + Partners 1.1.3. Seismic Load Assumed Horizontal Seismic factor 0.65 Vertical Seismic will neglected Horizontal seismic force: Fp = 0.65 . Wp Vertical seismic force: Note: wind forces govern for the design of this structure. The design wind pressure is 2.7 times higher than the equivalent seismic load horizontal acceleration. (1.1 kPa ( wind) vs. 0.41 kPa (seismic- 0.65*25kPa*.025m) Plus, the wind is factored by 1.6 in the ULS load cases while the seismic is not factored. Josef Gartner USA A division of Permasteelisa North America Corp. 321 North Clark Street, Suite 2410 Chicago, IL 606S4 Tel.: +1 (847) 225 8133 1 Fax: +1 (847) 225 7881 August 2013 Page 6 of 11 Josef Gartner GmbH Gartnerstraf5e 20 D-89423 Gundelfingen Telefon +49 9073 84-0 Telefax: +49 9073 84-2100 212190776 Apple Campus 2Project; Cupertino CA 08.02A Vertical Glazing and Shading Canopy Foster + Partners Applied loads Will be calculated by software LC2: Wind Josef Gartner USA A division of Perrnasteelisa North America Corp. 321 North Clark Street, Suite 2410 Chicago, IL 60654 Tel.: +1 (847) 225 8133 1 Fax: +1 (847) 225 7881 August 2013 Page 7 of 11 GARTNER Isometric Josef Gartner GmbH GartnerstraMe 20 D-89423 Gundel ingen Telefon +49 9073 84-0 Telefax: +49 9073 84-2100 212190776 Apple Campus 2Project; Cupertino CA 08.02A Vertical Glazing and Shading Canopy Foster + Partners Load case 3: Seismic in X 1.1.4. Max Utilization of Steel Sections Extract of Appendix 1 212190776-ST-MOBM-A001-REV00 RF-STEEL AISC CAI Members Design Ratio t'1 1.00 0.90 0.80 0.70 0.50 0.50 0.40 0.30 0.20 0.10 0.00 Max: 0.74 Min: 0.00 Members Max Design Ratio: 0.74 Josef Gartner USA A division of Permasteelisa North America Corp. 321 North Clark Street, Suite 2410 Chicago, IL 60654 Tel.: +1 (847) 225 8133 1 Fax: +1 (847) 225 7881 August 2013 Page 8 of 1 i GARTNER l F�. Josef Gartner GmbH Gartnerstrage 20 D-89423 Gundelfingen Telefon +49 9073 84-0 Telefax: +49 9073 84-2100 11111 GARTNER 212190776 Apple Campus 2Project; Cupertino CA 08.02A Vertical Glazing and Shading Canopy Foster + Partners 1.1.5._Max stresses in glass Stress in glass C01: LG7/P or LG2/P or LG3/P or LG4/P or LGS/P surfaces sigma-1,+ Surfaces Max Sigma-1,+: 25.254, Min Sigma-1 +:-10.336 [N/mm2j Values: Sigma-1,+ [N/mm2j <30.3 N/mm2 see report 212190776-ST-VG-0001-RevOl Additional safety factor included because stresses are based on LRFD calculation! Josef Gartner USA A division of Permasteelise North America Corp. 321 North Clark Street, Suite 2410 Chicago, IL 60654 Tel.: +1 (847) 225 8133 1 Fax: +1 (847) 225 7881 August 2013 Page 9 of 11 Isometric Josef Gartner GmbH Gartnerstrage 20 D-89423 Gundelfingen Telefon +49 9073 84-0 Telefax: +49 9073 84-2100 GARTNER 212190776 Apple Campus 2Project; Cupertino CA 08.02A Vertical Glazing and Shading Canopy Foster + Partners 1.1.6. Hilti Anchor Kwik Bolt TZ CS 1/ (3 %) Design assumes 4 anchors per basepoint with spacing of 4.25" x 6.25" and maximum uplift reaction forces from LG3 ( see Appendix) ProBs Anchor2.4.1 C— wry. Pape: 1 Speeder. PRject Ad*e$$. Sdd -.je* 1 P.. No.: PN" 1 Fax: I Date- 8:5'2013 EbA 1 Input data Altoita WW and diatwaar: lJfe� erM/d -2 Wpth: hsuedi Valid Pl.*.. stff irkst Andw PhDs: Ptoae Base material Rekttattwrrot Saisrdo loads (cat: C. D. E or F) cibommy IL1 a W bL%1 Kwik Sot TZ -CS to (3 1/a) hK-3150 im. h_=3.025 in ---- �� Carbon S" ESR-1017 5t112013 I WV2015 destn me8nd AO 3181AC103 ob -0.000 in. (m stardom: t-0.500 in % x 4 x t-10.000 A x 8.000 in. x 0.500 m.: (Remmxrdad plate thidntess: M -I-Wed) s shape (AISC} (L x w x T x FT) - 3.000 k. x 2.330 n x 0.170 in. x 028o M. aadmd-4,a e.2500. V -2500 Ps[ h - 18A00 in. tN1fiQIx *..Wm S. shear. O.IdI E - fupPWM ul el�lt M RWOIOM a pre edge r* twmmt none Of 6 NO.4 bar no eaorro,vxew(<ram�am razes. n.-aaw awn hmner.esnustnsn.un awm.w.ewx. Josef Gartner USA Josef Gartner GmbH A division of Permasteelisa North America Corp. GartnerstraBe 20 321 North Clark Street, Suite 2410 D-89423 Gundelfingen Chicago, IL 60654 August 2013 Telefon +49 9073 84-0 Tel.: +1 (847) 225 9133 1 Fax: +1 Page 10 of 11 Telefax: +49 9073 84-2100 (847) 225 7881 GARTNER 212190776 Apple Campus 2Project; Cupertino CA 08.O2A Vertical Glazing and Shading Canopy Foster + Partners wvrw.hil6.us Profls Anchor 2.4.1 Company-, Page: 2 Specifier Project: Address: Sub -Project I Pos. No-: Phone I Fax: [ Date: 8,5'2013 E-Mail: 2 Proof I Utilization (Governing Cases) Design vakres Ob] Utilization Loading Proof Load Capacity f ,1%] Status Tension 478D 76 8 03I- OK Shear Steel Sf av* 1070 W2 -130 OK Loading py fb �3 Utilization f wv v 1%) Status Combinedtension and Shaw loads 3 Warnings • Please consider all details and hiritsfwamings given in the detailed report! Fastening meets the design criteria! 4 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilb products and are based on the principles, formulas and security regulations in accordance with HRft technical directions and operating, mounting and assembly insvugons, etc., that must be sncdy complied with by the user. All figures contained therein ate average figures, and therefore use -specific tests are to be conducted prior to using the relevant Hilti product The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the compieseness and the relevance of the data to be put in by you. Moreover. you bear sale rezponsibi ty for having the results of the calculation checked and cleared by an expert, par aculany with regard to compliance with appiicisile norms and permits, prior to Ming them for your specific facility. The Software serves only as an aid to interpret norms and permits without any Wmardee as to the absence of errors, the correctrhess and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software_ In particuiar, you must arrange for the regular backup of programs and data and. if applicable, carry out the updates of the Software offered by Hilt on a regular basis. If you do not u se the Autoupdate function of Ow Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hft Website- HIM wl not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you. Josef Gartner USA A division of Permasteelisa North America Corp. 321 North Clark Street, Suite 2410 Chicago, IL 60654 Tel.: +1 (847) 225 8133 1 Fax: +1 (847) 225 7881 August 2013 Page 11 of 11 Josef Gartner GmbH GartnerstraM 20 D-89423 Gundel ingen Telefon +49 9073 84-0 Telefax: +49 9073 84-2100 Josef Gartner GmbH Page: 1/54 Gartnerstra& 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 COVER Project A.0 Structure: BenchmarkGesie11-Mowel Date: 08/02/2013 STRUCTURAL ANALYSIS PROJECT AC2 Apple Cmnpus 2 Benchmark Mockup CLIENT Apple Inc. lISA CREATED BY Harald Elbert Josd Gagner GmbH ® T RFEM 4.10.2880 - Arbitrary 31) Structures solved using FEM www.dlubal.com Josef Gartner GmbH Page: 2/54 GartnerstraMe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073184.0 - Fax: 09073/84-2100 STRUCTURE Protect 1CZ Structure: Benchmarkl3esie11-WDowel Date: 08/02=13 CONTENTS OCONTENTS fracture 2 rap . L: L2 L 1+ L 3+ L a £ =;Nodes 2 Graph. Surfaces Sigma-1,+, LC2: Wind 17 L(ri 2 Graph. Deformations u, LG6: SLS DL+0,7 18 " =Materials 3 Wind 18 Surfaces 3 Results - Load Combinations 19 > Nodal Supports 3 Nodes -Support Forces 19 Nodal Supports -Springs 3 Members - Deformations 19 Line Releases 3 Members - Internal Forces 21 Cross -sections 4 Cross -sections - Internal Forces 30 MemW Releases 4 Graph. Surfaces Sigma-1,+, C01: LG1/P or 40 { Member Eccentricities 4 LG2/P or LG3/P or LG4/P or LG5/P 40 Members ` 4 Graph. Surfaces Sigma-1,-, C01: LG1/P or 41 Graph : Structure 5 LG2/P or LG3/P or LG4/P or LG5/P 41 Loads 6 RFSTEEL AISC 42 Load Cases 6 CAI - Design of steel members 42 ` ' Settings;for non -linear analysis 7 according to AISC (LRFD or ASD) 42 f LWind C 2 - 7 General Data 42 Load groups 7 Details 42 Settings for non linear analysis 7 Materials 42 Loadcoinbittatlons" 7 Cross -Section 42 Results - Load Cases, Load Groups a Effective Lengths - Members 42 Results -: Summary 8 Design Parameters 43 Nodes - Support Forces 9 Results 44 I!, t SO.lf-welght LG1 1.2•LCt + 1.6"LC2 11 12 Design by Load Case Governing Internal Forces by Member 44 44 <LG2:1.2•LCt-1.6'LC2 13 Parts List by Member 52 Graph LG3: 0.VLCt + 1.6•LC2 14 Graph. RF-STEEL AISC - Members Design Ratio 53 %;Graph . 1G4: 0.9'CC1= I.6'LC2 15 CAI 53 Cartesian NODES Reference ; " Cooriinats Node coordinates X .. Y ' x t Node Type, Node . System X [Cm] Y (am] Z (cm) Comment Y z 473 Standard Cartesian 0.00 50.00 0.00 >34$ Standard 47 Cartesian 0.00 -160.00 0.00 r�r� 49'� ;Standartl: - Cartesian 0.00 -94.20 0.00 50 Standard 47 Cartesian 0.00 0.00 -350.00 Z 5t Itandar - Cartesian 0.00 50.00 -258.80 52 Standard Cartesian 0.00 94.20 0.00 53 Standard -: 47 Cartesian 0.00 60.00 0.00 SS Standard - Cartesian 25.00 50.00 -350.00 56 Standard Cartesian 1080.00 50.00 0.00 58, _ Standard Cartesian 25.00 60.00 0.00 a0 Standard - Cartesian 230.00 50.00 0.00 61 Standard Cartesian 250.00 50.00 0.00 62 Standard Cartesian 270.00 50.00 0.00 63 Standard Cartesian 330.00 50.00 -350.00 87 .'Standard ... Cartesian. 330.00 60.00 0.00 $$ Standard Cartesian 540.00 50.00 -350.00 63 Standard Cartesian 540.00 50.00 0.00 7t1 Standard Cartesian 750.00 50.00 -350.00 74, "Standard Cartesian 750.00 50.00 0.00 75 Standard Cartesian 810.00 50.00 0.00 76 Standar! - Cartesian 830.00 50.00 0.00 77 Standard - Cartesian 850.00 50.00 0.00 ;Standard Cartesian 1055.00 50.00 -350.00 8a _ Standard Cartesian 1056.00 50.00 0.00 $$ Standard "' 56 Cartesian : 0.00 -160.00 0.00 84 Standard Cartesian 1080.00 94.20 0.00 85 Standard . 56 Cartesian 0.00 0.00 -350.00 a 86 Standard - Cartesian 1080.00 50.00 -258.80 $7 Standard ' < - Cartesian 1080.00 94.20 0.00 "Standard 56 Cartesian 0.00 60.00 0.00 Line in 1 , Une Type Nodes No. Line Length 1(cm] <: 1 Polyline 59,60 205.00 X .2 .:. ��PDlyline 81.56 25.00 X 3 Polyline 78,85 25.00 X 4 <a Polyline ' 70,78 305.00 X 5 Polyline 68,70 210.00 X 8 Poyline 63,68 210.00 X 7 Polyline 55,63 305.00 X ' Pot me 48,49 15.80 Y �$ Polyline 49,51 296.26 YZ 50 " " Poyline" _ 49,47 144.20 Y fit Polyline 50,51 91.20 Z 52� Polyline 51,47 258.80 Z 53 Polyline 47,53 60.00 Y Pol"Poy line 60,61 20.00 X ,Polyline 60,62 40.00 X Polyline 61,62 20.00 X ® T RFEM 4.10.2680 - Arbitrary 3D Staetrres solved using FEM www.dtubal.com Josef Gartner GmbH Page: 3/54 11 GartnerstraU 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 STRUCTURE IRV Project AC2 Structure: BenchmarkGeste11-Moire[ Date: 08/02/2013 le LINES ;Ling Line Length y FiP w: Wna,Type Nodes No. I gm] , 83 Polyllne 62,67 60.00 X 68 Polyllne 50,55 25.00 X l VPolyllne 67,74 420.00 X +7 ' ; - ,Polyllne 74,76 60.00 X r 7B"Po lyllne 75,76 20.00 X ..Polyllne 77,75 40.00 X 78 Polyllne 76,77 2000.X 80 Polyllne 77,81 205.00 X 85 Polyllne 83,84 15.80 Y 86 _Polyllne 84,86 296.26 YZ $7 Polyllne 84,56 144.20 Y Polyllne 85,86 91.20 Z Polyline 86,56 258.801 Z t , ; Polyllne > 56,88 60.001 Y MATERIALS Marl Materiaf E-Modulus CrModulus Poisson's R. Sp. Weight Coefr. Thermal Sar factor =Tio Description E [kN/crn I G [kN1crn2] µ [-] Y [kWm3j a [1/°C] 7M [-1 F 1 Steel S 355 i DIN 21000.00 8100.00 0.300 78.50 1.2000E-05 1.100 Material Model - Isotropic... 18800:1990-11 2 Fbat Glass I E DIN ENp13474 I 7000.00 2800.00 0.230 25.00 9.0000E-06 1.000 $ ` 4�a�nPG Well eife Isotropic Z-14 7- ( 16000.00 6150.00 0.300 80.00 1.2000E 05 1.100 s Material Model - Isotropic... SURFACES Srkface Mater. Thickness Excentr. Integrated Objects No. No Surface Type Boundary Line No, No. Type d [mm] ` ez [mm] Nodes Lines I Openings Plane 7,68,51,52,58,1,61, 2 Constant 25.0 0.0 60,62,76, 63,70;75,77,80,2,89, 78 88 3-6 NODAL SUPPORTS x SC1p�iof3 Rotation PI olumn Support Conditions Y st k Nois;No Sequen. about X about Y about Z In Z ux ur I ur I wx I (Prwz Z = 5 T48,53,83,88 1 XYZ 1 0.001 0.001 0.001 U Spring I Spring I N I U I U I U �wvr�� vvrrvrt � v � vrRmvv Support Translation Spring [Wmm] Rotation spring [Nm/rad] No NodesN¢; C,x, C ,r C,.r Ca,x' Cm,r C�,z .. 5 48,53,83,88 1 20000.0 1 20000.0 ;I;ine Surface° ` Side Axial/Shear N Release-/ Spring [N/mmz] > Vy V. Moment Release / Spring [NWrad/mm] MT My Mz 1 1 - U 100.0 100.0 N U U 2 1 - ❑ 100.0 100.0 V9 U 3 1 - U 100.0 100.0 181 U " 4 1 U 100.0 100.0 N U 5 1 - U 100.0 100.0 0 U U 6 1 U 100.0 100.0 N ❑ U 7 1 - Cl 100.0 100.0 M U LJ ` 61 . 1 ❑ 100.0 100.0 kQ U ❑ 52 1 - U 100.0 100.0 21 U U 58 1 U 100.0 100.0 N U 11 1 61 1 - U 100.0 100.0 W U Li 83 1 U 100.0 100.0 0 U ❑ 68 1 - U 100.0 100.0 rA U U 70 1 U100.0 100.0 M U U i5 1 - IU 100.0 100.0 N U U 77 1 U 100.0 100.0 0 U Li 80 1 - U 100.0 100.0 0 U U U 100.0 100.0 N U ❑ 89 1 U 100.0 100.0 0 U III oc,1 TRFEM 4.10.2880-Arbitrary 3D Shuctures solved using FEM vnNuv diubal.com Josef Gartner GmbH Page: 4/64 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073184-0 - Fax: 09073/84-2100 STRUCTURE Project. J , i _ Structure: SenchmarkGestell-V3Dowel Date: 08/02/2013 ""°'°" IW.63 n ElSegi CROSS -SECTIONS y Cross section Meter. iT [cm4] Iv I1-2 No Description No. A 1-21 Av cm2] A= (cm21 1 RRO 200x100x6.3 1 1470.00 1770.00 600.00 35.20 7.93 22.46 oaoioova rma rorzss(es `v 'Z., -RRO200X100x6.3 -.- 1 - 1470.00 1770.00 600.00 35.20 7.93 22.46 3 2ORO 60x4 1 71. 4. 45.90 E:] 8.82 82 3.76 76 3.7676 4 RRO200x700x6.3 1 1470.00 1770.00 600.00 35.20 7.93 22.46 3 5 ORO 100x4 1 357.00 233.00 233.00 c t&R35(RNx) 15.20 6.42 6.42 6 Rectangle 2513165 2 1640.23 6605107.50 412.11 791.25 659.37 659.37 Cable PG 5 (Pfeifer) 3 0.04 0.02 0.02 0.39 0.33 0.33 Y-X MEMBER RELEASES z f41 ase 'force Release or SpringjN/mm] Moment Release or Spring [Nm/rad] r "o N Vy'; Vz MT My Mz Comment Y-�'X ; MEMBER ECCENTRICITIES z '' FEoo Rr#fersnce Member Start'- EocentriGty [mm] Member End - Eccentricity [mm] Tz em e1c ei,Y e1,z 8Lx eix aJ2 Comment 1 1-4; 1 Global 0.0 150.0 0.0 0,0 150.0 0.0 �r Global 0,0 A50.0 0.0 0.0 -150.0 0.0 K 1' MEMBERS rna Mlember Line Rotation Cross section Release No. Ecc. Div. Length ' fed No Member Type 8 [°] Start End i Start End No. No. L [an]' • P pr,Y zl 1 1 Beam Angle 90.00 2 2 205.00 X +"+ �e a z 2 Beam Angle 90.00 2 2 - - - 25.00 X r 3 3 Beam Angle 90.00 2 2 1 25.00 X Stan Y 4r ., , 4 Beam Angle 90.00 2 2 - - - 305.00 X Hew, 5, 5 Beam Angle 90.00 2 2 - 210.00 X _ = 8 e o• 6 6 Beam Angle 90.00 2 2 - 210.00 X 7 7 Beam Angle 90.00 2 2 - 305.00 X :,48„ Beam Angle 90.00 1 1 - 15.80 Y 49 Beam Angle 0.00 3 3 1 2 296.26 YZ 50 50 Beam Angle 90.00 1 1 - - - - 144.20 Y 51 >- 51 Beam Angle 90.00 4 4 - 91.20 Z 52 ,:52 Beam Angle 90.00 4 4 - - 258.80 Z 53 = 53 Beam Angle 90.00 1 1 - 60.00 Y S8 58 Beam Angle 90.00 2 2 - 25.00 X 60 60 Beam Angle 90.00 5 5 1 20.00 X 6� 61 Beam Angle 80.00 5 5 - 2 - 40.00 X 62 62 Beam Angle 90.00 5 5 1 20.00 X 63 63 . Beam Angle 90.00 2 2 - 60.00 X 68 ' 68 Beam Angle 90.00 2 2 1 25.00 X 76 70 Beam Angle 90.00 2 2 - - 420.00 X 75 75 Beam Angle 90.00 2 2 60.00 X 76 `76 Beam Angle 90.00 5 5 1 20.00 X 77 77 Beam Angle 90.00 5 5 2 40.00 X 78 78 Beam Angle 90.00 5 5 - 1 20.00 X 8dj 80 Beam Angle 90.00 2 2 205.00 X 85r 85 Beam Angle 90.00 1 1 15.80 Y 8f> , 86 Beam Angle 0.00 3 3 1 2 296.26 YZ 8T, 87 Beam Angle 90.00 1 1 - - - 144.20 Y 86 88 Beam Angle 90,00 4 4 91.20 Z 89 ` Beam Angle 90.00 4 4 258.80 Z s 80 90 Beam Angle 90.00 1 1 60.00 Y ® RFEM 400.2680 - Arbitrary 30 Structures solved using FEM www.diubal.com Surface Thicknesses d Imml 25.0 %' —"- X Josef Gartner GmbH Page: 5/54 Gartnerstralle 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 GRAPHICS Project ;7W2 Structure: BenchmarkGesiell-Mowel STRUCTURE Date: 08/02/2013 Isometric ® T RFEM 4.10.2680 -Arbitrary 3D Structures solved using FEM www.diubal.com ` Josef Gartner GmbH Page. 6/54 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: ON73/84-2100 LOADS ProjectAC2 Structure: BenchmarkGestelf-Mowel Date: 08/02/2013 LOAD CASES Method of LC Description LC Factor Property of load case Self weight Analysis q 3 Self -weight %Mnd . EQ-X 1.0000 1.0000 1.0000 Permanent Variable Permanent 1.00 0.65/0.0010.00 3rd Order 3rd Order 3rd Order 4„ ;E4-Y _ 1.0000 Permanent 0.00/0.66/0.00 3rd Order ® I RFEM 4.10.2680 -Arbitrary 3D Structures solved using FEM 1 www.dlubal.com ` Josef Gartner GmbH Page: 7154 Gartnerstrafle 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073184-0 - Fax: 09073/84-2100 LOADS MkPrqject:AI Structure: BenchmarkGostell-Mowei Date: 08/02/2013 SETTINGS FOR NON -LINEAR ANALYSIS LC Favorable effects Divide results back Reduction of Stilfies <No 1 C Deskxiption due to Tension Forces by LG Factor by Gamma M (" Se weight ❑ �l 3 EQ-X m ❑ z Lj LC2 SURFACE LOADS LC: Load Load. Load Load Parameters Wind < Ntl On Surfaces No. Type Distribution Direction Symbol I Value I Unit Force Uniform z p, 1.050 kN/m2 LOAD GROUPS LG Method of No LG DasCription. - Factor Load Cases in LG Analysis 1 - 1.0000 1.2'LC1 + 1.6'LC2 3rd Order 1.0000 1.2'LC1 - 1.6"LC2 3rd Order 1.0000 0.9'LC1 + 1.6-LC2 3rd Order 4 1.0000 0.9•LC1 - 1.6'LC2 3rd Order 5 7 : 1.0000 1.2'LC1 + LC3 + LC4 3rd Order 6 SLS DL+0,7 Wind 1.0000 LC1 +0.7'LC2 3rd Ober SETTINGS FOR NON -LINEAR ANALYSIS LG Favorable effects Divide results balk_ Reduction of Stifines No LG Desaiptign- due to Tension Forces by LG Factor by Gamma-M 1 1.2"LCt + 1.6'LC2 29 Li A 1.2•LC1-1.6'LC2 0 G 3 ; 0.9•LC1 + 1.6'LC2 0 Li 2?l +t 0.9'LC1 -1'.6-LC2 0 J M 5 1.2'1-C1 + LC3 + LC4 <9 L l 6 „ SLS DL+0,7 Wind ;, ! L7 m * LOAD COMBINATIONS IJo ,[ CQ Descripilon I Combination Criteria 1I LG1/P or LG2/P or LG3/P or LG4/P or LG5/P ® 1 RFEM 4.10.2MO -Arbitrary 3D Structures solved using FEM Iwww.diubal.com Josef Gartner GmbH Page: 8/54 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S Protect : Structure: BenchmarkGesbelf-Mowel I Date: 08/02/2013 ■ RESULTS -SUMMARY F . a° ,Desatptlolt', Value Unit Comment LC2 - Wind Sum of Leads in X s 0.00 kN Sum of SupRoit Reactions inX` ' 0.00 kN Sum of Loads in Y 39.68 kN Sum of Support Reactions in Y 39.68 kN Deviation 0.00% Sum of LoadiQA Z , 0.61 kN Sum of SupporkReactfons`in Z 0.51 kN Deviation -0.00% Max Displacement in X -1.1 mm Member No. 77, x: 0.00 o n Max Displacement in Y 88.9 mm Member No. 6, x: 210.00 cm Max Displacement in Z 2.4 mm FE Node No. 110 (X: 550.00, Y: 50.00, Z:-339.87 cm) Max. Vector Displacement 88.9 mm Member No. 6, x: 210.00 an Max rotation about X 32.0 mrad FE Node No. 3830 (X: 540.00, Y: 50.00, Z: -9.95 cm) Max rotation about Y -0.3 mrad Member No. 68, x: 0.00 cm Max rotation about Z -26.5 mrad FE Node No. 1000 (X: 1071.67, Y: 50.00, Z:-258.80 cm) Method ofAnatyais 3rd Order Large Deformation Analysis (Non -linear, Newton-Raphson) Conside4avorable effact$of tensile forces of membe Yes Divide resuls.00 Gy LG factor - NO , SUffness:lZeductior�,fryGemr0 M Yes umberof+iteretions 7 L Sum of Loads in X.:: ' 0.00 kN Sum of Sup R0,n 6actions.in X- 0.00 kN Sum of Loads in Y 63.47 kN Sum of Support Reactions in Y 63.47 kN Deviation 0.00% Sum of Loads in Z 41.18 kN Sum of;laiipleaisionsin Z-= 41.18 kN Deviation 0.00% Max Displacement in X -2.3 mm Member No. 88, x: 0.00 an Max Displacement in Y 150.1 mm Member No. 6, x: 210.00 an Max Displacement in Z 6.8 mm Member No. 6, x: 210.00 an Max. Vector Displacement 150.3 mm Member No. 6, x: 210.00 cm Max rotation about X 50.0 mrad FE Node No. 3830 (X: 540.00, Y: 50.00, Z: -9.95 an) Max rotation about Y -0.9 mrad Member No. 68, x: 0.00 am Max rotation about Z -42.8 mrad FE Node No. 1000 (X: 1071.67, Y: 50.00, Z:-258.80 cm) Method 0.(-' ysis 3rd Order Large Deformation Analysis (Non4inear, Newton-Raphson) Consider favorable effects of tensile forces of membe Yes Divide results back by LG factor No Stiffness Reduction by Gamma-M Yes Consider favorable effects due to tension forces of m Yes Divide results back by LG factor No Reduction of stiffness by safety factor Yes Number of Iterations 9 L - 1- ` y Sum of Loads in X 0.00 kN Sum of Support Reactions in X 0.00 kN Sum of Loads m T ! ' -63.47 kN Sum of SipReaisiYpocton -63.47 kN Deviation 0.00% Sum of Loads rn Z 41.10 kN Sum of Support Reactions in Z 41.10 kN Deviation 0.00% Max Displa0emerft in X -2.3 mm Member No. 88, x: 0.00 cm Max DlspJacementdi Y -144.9 mm ` Member No. 6, x: 210.00 om Max Displaoementjn Z 2.2 mm Member No. 6, x: 210.00 am Max. Vector Displaoeltrent 144.9 mm Member No. 6, x: 210.00 an Max rotation about X -48.7 mrad FE Node No. 3830 (X: 540.00, Y: 50.00, Z: -9.95 an) Max ratat on1eboutY 1.0 mrad Member No. 86, x: 0.00 cm Max rotatioh ebout:2 -. - -42.3 mrad FE Node No. 998 (X: 8.33, Y: 50.00, Z:-268.93 an) Method of AriNO* 3rd Order Large Deformation Analysis (Non -linear, Newton-Raphson) Consider fayorabib-effects of tenalle forces of membe Yes Divider u back y LG factor Stiffness udiof Gamma M No Yes 'l , Consider favorableects due to tension fora of m Yes Divide results back by LG factor No Reduction of stiffness by safety factor Yes NumberorIteratidns _' 9 L + . Sum of Loads iqX' 0.00 IN Sum ofSuppor(04ic ions in;X; 0.00 kN Sum of Loads in Y 63.47 kN Sum of Support Reactions in Y 63.47 kN Deviation 0.00% Sum of Loads 31.22 -IdJ Sum of Suppoit Reactions sr Z ; , 31.22 kN Deviation 0.00% Max Displacement in X -2.2 mm Member No. 88, x: 0.00 am Max Displacement in Y 148.0 mm Member No. 6, x: 210.00 am Max Displacement in Z 6.4 mm Member No. 6, x: 210.00 cm Max. Vector Displacement 148.2 mm Member No. 6, x: 210.00 am Max rotation about X 49.4 mrad FE Node No. 3830 (X: 540.00, Y: 50.00, Z: -9.95 an) Max rotation about -0.9 mrad Member No. 68, x: 0.00 om Max rotation about Z -42.5 mrad FE Node No. 1000 (X: 1071.67, Y: 50.00, Z:-258.80 am) Method :ofAnatysis: _ - .. 3rd Order : Large Deformation Analysis (Non41near, Newton-Raphson) Consider favorable effects of tensile forces of membe Yes Divide results back by LG factor No Stiffness Reduction by Gamma-M Yes Consider favorable effects due to tension forces of m Yes Divide results back by LG factor No Reduction of stiffness by safety factor Yes Number of Iterations 9 Sum of Loads in X 0.00 kN Sum of Support Reactions in X 0.00 kN Ask ® RFEM 4.10.2680 - Arbitrary 3D Structures solved using FEM www.dlubal.com I IL: Josef Gartner GmbH GartnerstraBe 20, 89423 GUNDELFINGEN Tel: 09073/84-0 - Fax: 09073/84.2100 ■ RFRI II TR - R1 IMMARY Page: 9/54 Sheet: 1 RESULTS Project:'.- C2 , Structure: BenchmarkG99WI V$Dowet I Date: 08/02/2013 Detption % .., Value Unit Comment Sum of Loads irlY. -63.47 kN Sum ofsi;p - Reactions in"Y` -63.47 kN Deviation 0.00% Sum of Loads in,Z 31.16 IN Sum of Support Reactions in Z 31.16 kN Deviation 0.00% Max Dispieoembrtt in W_ „ -2.3 mm Member No. 88, x: 0.00 cm Max Diaplacemeirt in Y -144:3 mm Member No. 6, x 210.00 cm Max DisptaeeAlent in Z 1.9 mm Member No. 6, z 210.00 cm Max Vector Displacement 144.3 mm Member No. 6, x: 210.00 an Max rotation abouLX 48.6 cored FE Node No. 3830 (X: 540:00, Y. 50.00, Z: -9.95 cm) Max rotation abut Y , 1.0 mrad Member No.86, x: 0.00 cm Max rotat o[t�kopt Z". -42.1 mrad FE Node No. 998 (X: 8.33, Y: 50.00, Z:-268.93 an) Method of Analysis 3rd Order Large Deformation Analysis (Non -linear, Newton-Raphson) Consider favorable efteds oftensile foroes.of membe Yes Divide results bath by LGfiactor No Strffness;Reductigit by Gamma M Yes Considerfavoreb(e effects due to tension forces of m Yes Divide results back by LG factor No Reduction of stiffness by safety factor Yes NumberoF,"iteTatYoni;• .' 9 + wa + Sum of Uoads in X: Sum of s- poi , k', ums in.Xi 21.53 21.53 kN kN Deviation 0.00% Sum of Loads in Y 21.53 kN Sum of Support Reactions in Y 21.53 kN Deviation 0.00% Sum of (jails 39:75 kN Sum of Support=Reactio-nivin Z 39.75 kN Deviation 0.00% Max Displacement m X 1.3 mm Member No. 49, x: 169.29 an Max Displacement in Y 48.5 mm Member No. 6, x: 210.00 am Max Displacement In Z 2.5 mm Member No. 5, x: 100.00 an Max. Vector Displacement 48.5 mm Member No. 6, x: 210.00 an Max rotation about X 16.2 mrad FE Node No. 3829 (X: 550.00, Y: 50.00, Z: -9.95 cm) Max rotation about Y 0.6 mrad Member No. 49, x: 296.26 o n Max rotation about Z 13.0 mrad FE Node No. 998 (X: 8.33, Y: 50.00, Z-268.93 cm) Method.df Andlysjs: ; 3rd Order Large Deformation Analysis (Non4inear, Newton-Raphson) Consider favorable erfects of tensile forces of membe Yes Divide results back by LG factor No Stiffness Reduction by Gamma-M Yes Consider favorable effects due to tension forces of m Yes Divide result's balk by LG factor No Reduction of stiffness by safety factor Yes Number of iterations 4 L Sum of Loads In X 0.00 kN Sum of Support Reactions in X 0.00 kN Sum of Loads in Y, = 27.78 kN Sum of Suppert Readions'In Y, 27.78 IN Deviation 0.00% Sum of Loadsin'Z 33.41 IN Sum of Support Reactions in Z 33.41 kN Deviation 0.00% Max Disptaoement•1ra X -0.7 mm Member No. 77, x: 0.00 art Max Dlsplagameitt in Y 66s8 . mm Member No. 6, x: 210.00 an Max Orsplaoerlent in 2 2.8 mm Member No. 6,. x: 200.00 an Max* ax Veer DTsplgcemerlt ' . 66.9 mm Member No. 6, x: 210.00 an Max nnatton aboutX 24.4 cored FE Node No. 3830 (X: 540.00, Y: 50.00, Z: -9.95 an) Max rot8tiprr about Y -0.2 mrad Member No. 68, x: .00 cm Max rotation about Z., ." -19.2 `mrad FE Node No. 1111 (X: 1071,67, Y: 50.00, Z:-248.85 cm) Method of Analysis 3rd Order Large Deformation Analysis (Non -linear, Newton-Raphson) . Consider_ le opeds,oftensile forces of membe Divde resu0 its by LG factor " Yes No StifinessRddufsron by Gamma M Yes Consider favorable effects due to tension forces of m Yes Divide results back by LG factor No Reduction of stiffness by safety factor Yes NumWt,`dFII6ibI1dns; 6 Summary Number of 1D Finite Elements 306 Number of 2D Finite Elements 3850 Number of 3D Finite Elements 0 Number of FE Mesh Nodes 4002 Number of Equations 24012 Matri(Solver Method Direct Max Number of•Heretiats 100 NumberofLs Nurriber;of Divisions:for Member Results 10 Solver Version 64 lift DivvsiohalGable/FoyndationfraperedMembers' 1 Refer IntemaPForpesto Deformed Structure Yes Actrvate:learrig(dity (A Y Ai) of members No Bending Mindlin Akxwracf+cfconvergenae criteria in the nonlinear FE 1 ■ NODES - SUPPORT FORCES Node F Support forces [kN] Support moments [kNm] No. LC/LG r ws y, Y ,4 R� Mx. Mr 1Nz . G I i i 8 1 LC2 1 6.261 10,04 -15.70 0 .001 0.001 0.00 ® RFEM 4.10.2680 - Arbitrary 3D Structures solved using FEM vwwv.diubal.com Josef Gartner GmbH Page: 10/54 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S Project:, Structure: BenchmarkGAstell-V30owe1 Date: 08/02/2013 ii NODES -SUPPORT FORCES Node Support moments (kNmj No. LC/LG RI> , _ _'.. ,Pr , .:, P.p MxMr Mz 48 LG1 10.05 16.14 -19.88 0.00 0.00 0.00 LG2 8.02 <: 4646 31.63 0.00 0.00 0.00 LG3 '10.09 16,12 -21.17 0.00 0.00 0.00 LG4 -6.00 '' . ,-1804 30.09 0.00 0.00 0.00 1.135 6.62 5.41 3.64 0.00 0.00 0.00 LG6 4.21 ` 7:03 -6.49 0.00 0.00 0.00 53 LC2 -12.09 9.80 15.96 0.00 0.00 0.00 LG1 45;60 40.47 0.00 0.00 0.00 LG2 23.04 -15.68 -11.08 0.00 0.00 0.00 LG3 -18.61' > i5:61 36.77 0.00 0.00 0.00 LG4 23.15 -15.70 -14.51 0.00 0,001 0.00 LG5 1 Z9 : 6.29 20.16 0.00 0.00 0.00 LG6 -9.03 6.86 23.19 0.00 1 0.00 83 LC2 ; ,636 :- '. 10.04 -15.70 ` 0.00 0.00 0.00 LGt -10.05 16.14 -19.88 0.00 0.00 0.00 LG2 802 "A 0 31.63 0.00- 0.00 0.00 LG3 -10.09 16.12 -21.17 0.00 0.00 0.00 LG4 46:04 ; ; 30.09 0.00 0.00 0.00 LG5 -0.01 5.48 -1.83 0.00 0.00 0.00 LG6 4.21 s . 703 '" -6.49 0.00 0.001 0.00 88 LC2 12.09 9.80 15.96 0.00 0.00 0.00 LG1 18.71 ;: 15:60 40.47 0.00 0.00 0.00 LG2 -23.04 -15.68 -11.08 0.00 0.00 0.00 LG3 18.81` :.- ' 15.61 36.77 , 0.00 0.00 0.00 LG4 -23.15 -15.70 -14.51 0.00 0.00 0.00 LG5 14Q2 <= 5.36 -; 25.05 `_ -0.00 0.00 0.00 LG6 9.03 6.86 23.19 0.00 0.00 0.00 £ Suppo LC2 O:Od ; : 38 88 . 0.51 £ Loads 0.00 39.68 0.51 £ Suppo LG1 0.00 i :63.47 `;; 41.18 £ Suppo LG2 0.00 -63.47 41.10 £Suppo LG3 0.00 63A7 ' . 31.22 £ Suppo LG4 0.00 , -63.47 31.16 £ Suppo LG5 21.53 21:53 . 39.75 £ Suppo LG6 0.001 27.781 33.41 ® RFEM 4.10.2680 - Arbitrary 31) Shutt. solved using FEM www.diubal.com Josef Gartner GmbH Page: 11/54 Gartnerstralle 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073184-0 - Fax: 09073/84-2100 GRAPHICS Protect AC2 Structure: BenchmarkGestell-Mowel Date: LCl: SELF -WEIGHT 08/02/2013 Isometric ® T RFEM 4A0.2880 -Arbitrary 3D Structures solved using FEM www.diubst.com Josef Gartner GmbH Gartnerstralle 20, 89423 GUNDELFINGEN Tel: 09073184-0 - Fax: 09073/84-2100 Page: 12/54 Sheet: 1 GRAPHICS project:=AE2 ` "` , Structure: ElenchmarkGostell-Mowel I Date: # LG1: 1.2*LC1 + 1.6*LC2 LG1: 1.2*LC1 + 1.6*LC2 Support Reactions[kN] 15.60 "max 08/02/2013 Isometric 19.88 , 0 _, ® RFEM 4.10.2M -Arbitrary 313 Structures solved using FEM www.diubal.com Josef Gartner GmbH Page: 13154 Gartnerstraf3e 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073184-2100 GRAPHICS Project: :At Structure: BenchmarkGesbelt-Mowel I Date: # LG2:1.2*LC1 -1.6*LC2 LG2: 1.2*LC1 - 1.6*LC2 Support Reactions[kN] `max 2: 08/02/2013 Isometric 16.06 ® T RFEM 4.10.26M - Arbitrary 3D Structures solved using FEM wwwdiubal.com Josef Gartner GmbH Page: 14/54 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 GRAPHICS Project:A Structure: BenchrnarkGestell-Mowel I Date: t LG3c 0.9*LC1 + 1.6*LC2 LG3: 0.9*LC1 + 1.6*LC2 Support Reactions[kN] 15.61 36. 08/02/2013 Isometric 21.17 09 ® T RFEM 4.10.2880 - Arbitrary 313 Structures solved using FEM www.dlubal.com Josef Gartner GmbH GartnerstraBe 20, 89423 GUNDELFINGEN Tel: 09073/84-0 - Fax: 09073/84-2100 Project AC ,,,, Structure: Benchnnark"11911-Mowei LG4: 0.9*LC1-1.6*LC2 LG4: 0.9*LC1 - 1.6*LC2 Support Reactions[kN] "`-x 2- Pager 15/54 Sheet: 1 GRAPHICS Date: 08/02/2013 Isometric 16.04 ® T RFEM 4.10.2880 -Arbitrary 313 Structures solved using FEM www.diubal.com Josef Gartner GmbH Page: 16/54 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 GRAPHICS Project: � 1G2:, Structure: BenchtnarkGeste11-WElowel I Date: t LG5: 1.2*LC1 + LC3 + LC4 LG5: 1.2*LC1 + LC3 + LC4 Support Reactions[kN] 5.29 1 20.: :ar'c •rs 3 08/02/2013 Isometric ® T RFEM 4.10.2680 - Arbitrary 313 Structures solved using FEM www.diubal.com Josef Gartner GmbH Gartnerstralle 20, 89423 GUNDELFINGEN Tel: 09073/84-0 - Fax: 09073/84-2100 Project ACZ , ; Structure: Benchmark6seWil-Mowel SURFACES SIGMA-1,+, LC2: WIND LC2: Wind Support Reactions[kN] Surfaces Sigma-1,+ 67! R�mm21 15.148 13.867 12587 11.306 %025 8.744 7.463 6.182 4.001 3.62D Z338 1.058 MR(: 15.148 Surfaces Max Sigma-1,+: 15.148, Min Sigma-1,+: 1.058 [N/mm2] Page: 17/54 Sheet: 1 GRAPHICS Date: 08/02/2013 Isometric 15.'70 i6 ® T RFEM 4.10.2680 • Arbitrary 3D Structures solved using FEM www.diubal.com Josef Gartner GmbH Page: 18/54 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 GRAPHICS Protect =ACZ Structure: BenchmarWest ell-V3Dowe1 I Date: f DEFORMATIONS U, LG6: SLS DL+0,7 WIND LG6: SLS DL+0,7 Wind u Darome8on [ui [--I 66.9 80.9 64.8 48.8 4V 36.7 30.6 24.6 18.5 12.5 8.5 0.4 Max: 66.9 Mn : 0.4 Max u: 66.9, Min u: 0.4 [mm] Factor of deformations: 17.00 Values: u [mm] 08/0=013 Isometric TRFEM 4.10.2660 -Arbitrary 3D Strictures solved using FEM www.diubal.com Josef Gartner GmbH GartnerstraBe 20, 89423 GUNDELFINGEN Tel: 09073184-0 - Fax: 09073184-2100 Project AC2; Structure: BenchmarkGesie[I-Mowet ■ NODES -SUPPORT FORCES Page: 19/54 Sheet: 1 RESULTS Date: 08/02/2013 Load combinations Node No. - CO Support x races JM Pv; .: pr =. Support momen M' Mr Mz 48 C01 Max 10.09 16.14 31.63 0.00 0.00 0.00 Min 8.02 -`-1t3:06 -21.17 0.00 0.00 0.00 53 COt Max 23.16 15.61 40.47 0.00 0.00 0.00 -15 70 -14.61 0.00 0.00 0.00 83 COt Max 8.02 16.14 31.63 0.00 0.00 0.00 min 16.09 `. -16.06 -21.17 0.00 0.00 0.00 88 C01 Max 1s.71 15.61 40.47 0.00 0.00 0.00 On -23.15 -15.70 =14.51 0.00 0.00 0.00 ■ MEMBERS - Load combinations Member Np�B L cation Aispiaceinants [mm] Rotations [mrad] No. CO QUA'] ux uy uZ TX wy T: Section 1 C01 59 0.00 max 0.7 3.7 1.6 0.3 4.6 0.5 2 - RRO 200x100x6.3 min . ; 0.2 -1.0 -1.7 -1.7 4.2 0.2 60 205.00 max 0.8 4.4 18.6 0.3 10.2 0.2 min 0.2 ' -OA ' -19.5 -1.7 -9.8 0.1 2 Cot 81 0.00 max 0.7 3.7 1.6 0.3 4.2 -0.1 2 - RRO 200x100x6.3 1; 1min -0.3 _ -1.0 -1.7 -1.7 4.6 -0.5 86 25.00 max 0.7 3.6 0.8 0.3 2.4 0.0 in -0.3 -1.1 -0.8 -1.7 -2.7 0.5 3 c01 78 0.00 max 0.7 3.9 19.2 8.2 40.0 -0.1 2 - RRO 200x100x6.3 min -2.1 -1.0 '+ -24.7 5.7 -39.7 -0.8 85 25.00 max 0.7 3.7 9.3 8.2 40.1 -0.1 min -2.3 -1.2 -14.7 5.7 -39.8 -0.9 4 c01 70 0.00 max 0.9 6.2 120.6 8.1 22.5 -0.0 2 - RRO 200x100x6.3 min -0.3 1.2 -126.0 5.7 -22.4 -0.5 78 305.00 max 0.7 3.9 19.2 8.2 40.0 -0.1 min -2.1 -1.0 -24.7 5.7 -39.7 -0.8 5 C01 68 0.00 max 0.9 6.8 144.9 8.1 0.1 0.0 2 - RRO 200x100x6.3 min 0.0 1.9 -150.1 5.6 0.0 0.0 70 210.00 max 0.9 6.2 120.6 8.1 22.5 -0.0 min -0.3 12 1 -126.0 -5.7 -22.4 -0.5 6 COi 63 0.00 max 1.0 6.2 120.6 8.1 22.4 0.5 2 - RRO 200x100x6.3 min 0.3 1.2 -126.0 -5.7 -22.5 0.1 68 210.00 max 0.9 6.8 144.9 8.1 0.1 0.0 min 0.0 1.9 A50.1 5.6 0.01 0.0 7 C01 55 0.00 max 2.1 3.9 19.2 8.2 39.7 0.8 2 - RRO 200x100x6.3 min 1.1 -1.0 -24.7 5.7 -40.0 0.2 63 306.00 max 1.0 6.2 120.6 8.1 22.4 0.5 min 0.3 ' 1.2 -126.0 5.7 -22.5 0.1 48- C01 48 0.00 Max 0.8 0.0 0.5 -0.2 0.6 2.9 1 - RRO 200x100x6.3 min -0.8 0.0 " -0.4 -0.5 -1.1 0.4 49 15.80 max 0.8 0.5 0.7 -0.2 0.6 3.1 in -0.8 0.1 -0.5 -0.5 -1.11 0.1 49 c01 49 0.00 max 0.1 0.5 0.9 0.8 0.7 -0.4 3 - QRO 60x4 min 45 -0.7 -0.7 -0.8 -2.9 -0.8 51 296.26 Max 0.7 -1.1 8.5 0.8 2.0 0.3 min 4.3 -1.8 -4.6 -0.8 -2.2 -0.8 50 C01 49 0.00 max 0.8 0.5 0.7 -0.2 0.6 3.1 1 - RRO 200x100x6.3 min -0.8 _ 0.1 -0.5 -0.5 -1.1 0.1 47 144.20 max 0.8 3.6 0.7 -0.2 2.7 0.3 in -0.8 - -1.1 02 -0.5 -2.4 -1.7 61. C01 50 0.00 Max 3.7 -1.1 9.3 2.7 5.7 0.6 4 - RRO 200x100x6.3 Min -1.2 -2.3 -14.7 -2.4 -8.2 0.1 51 91.20 max 3.6 -1.1 4.6 2.7 4.2 0.7 mm . -1.2 -1.8 -7.7 -2.4 -6.7 0.1 52 C01 51 0.00 Max 3.6 -1.1 4.6 2.7 4.2 0.7 4 - RRO 200x100x6.3 min -11 -1.8 ' -7.7 -2.4 -6.7 0.1 47 268.80 max 3.6 -0.2 0.8 2.7 1.7 0.5 min -1.1 -0.7 -0.8 -2.4 -0.3 0.2 53 C01 47 0.00 max 0.8 3.6 0.7 -0.2 2.7 0.3 1 - RRO 200x10ox6.3 Mir! -0.8 -1.1 ' 0.2 -0.5 -2.4 -1.7 53 60.00 max 0.8 0.0 1.2 -0.2 1.7 2.6 min 4.81 0.0 -0.9 -0.5 -1.2 -8.1 58 c01 47 0.00 max 0.7 3.6 0.8 0.3 2.7 0.5 2 - RRO 200x100x6.3 min - 0.2 -1.1 -0.8 -1.7 -2.4 0.2 ® RFEM 4.10.2880 - Arbitrary 3D Structures solved using FEM vwwvdlubal.com Josef Gartner GmbH Page: 20/54 GartnerstraRe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S Project: Structure: Benchnnark0es6e11-Mowel - I Date: 08/02/2013 AIL ® RFEM 4,10.2880 - Arbitrary 3D Structures solved using FEM www.diubal.com Josef Gartner GmbH Page: 21154 GartnerstraRe 20, 89423 GUNDELFINGEN Sheet: r 1 Tel: 09073184-0 - Fax: 09073/84-2100 R E S U L T S Protect: `•At:2 Structure: SenchmarkGeste11-V31101owei Date: 08/02/2013 ■ MLMULK3 - ULFORMAI IONS Low comDinanons Member Node j,9h Displaoemepts [mm] Rotations (mrad] No. CO ?4 .. x X[7lt�' _ ...:. , 8x uy uz (PX' qy (nz Section 89 r C01 86 0.00 max 3.6 1.8 4.6 2.4 4.2 -0.0 4 - RRO 200x100x6.3 -1.2 - -0.7 -7.7 -2.7 -6.7 -0.7 56 258.80 max 3.6 0.3 0.8 2.4 1.7 -0.0 min -1:1 -0.7 -0.8 -2.7 -0.3 -0.5 90 C01 56 0.00 max 0.8 3.6 0.7 0.5 2.4 1,3 1 - RRO 200x100x6.3 grin -0.8 -11 -0.3 0.0 -2.7 -1.7 88 60.00 max 0.8 0.0 0.9 0.5 1.2 2.6 min 48 0.0 -1.2 0.0 -1.7 -8.1 i MEMBERS -INTERNAL FORCES Load Combinations Member NgtleLvcation i �Skiear Foross,jkN] Moments [kNm] No. CO NaG q r[cmt. N Vy Vz Mr My M, Corresponding Load Cases 1 C01 59 0.00 Max N 16.31 0.10 12.59 -0.00 -22.73 -0.16 LG2 :Min;N 7 6.57 0.28 -12.64 0.00 23.31 -0.11 LG3 Max Vv 7.17 0.34 -12.58 0,00 23.32 -0.11 LG1 Min Vy 15.90 0.05 12.58 -0.00 -22.74 -0.17 LG4 Max V, 16.31 0.10 12,5 -0,00 -22.73 -0.16 LG2 Min'Vz . 6.57 0.28 -12.64 0.00 23.31 -0.11 LG3 Max MT 6.57 0.28 -12.64 0.0 23.31 -0.11 LG3 Min r 7.86 0.20 -3.76 -0.0 6.74 -0.02 LG5 Max M 7.17 0.34 -12.58 0.00 23.3 -0.11 LG1 Min'W, 15.90 0.05 12.58 -0.00 -22.74 -0.17 LG4 Max M, T85 0.'20 -3.76 -0.03 6.74 -0.02 LG5 Min M ' 15.90 ' 0.05 12.58 -0.00 -22.74 -0.17 LG4 60 205.60 Max 4.1 -0.05 -2.41 -0.03 -0.95 -0.01 LG5 Minty -9.11 -015 -8.06 -0.00 -2.35 -0.07 LG3 Max V 4.10 -0. -2.41 -0.03 -0.95 -0.01 LG5 MIn:Vy :. -7.66 -0.1 -8.05 -0.00 -2.35 -0.08 LG1 Max V, -3.22 -0.10 7.77 0.00 2.16 -0.05 LG4 Mln'Vz -9.11 -0.15 -8. -0.00 -2.35 -0.07 LG3 Max Mr -1.95 -0.11 7.76 O.OD 2.16 -0.05 LG2 Min MT 4:10 -0.05 -2.41 -0,0 -0.95 -0.01 LG5 Max My -1.95 -0.11 7.76 0.00 2.16 -0.05 LG2 Min M- -7.66 -0.16 -8.05 -0.00 -2. -0.08 LG1 max my 1.10 0.05 -2.41 -0.03 -0.95 -0.01 LG5 -7.66 -016 -8.05 -0:00 -2.35 -0.08 LG1 C01 81 0.00 Max N 16.30 -0.10 9 0.00 -22.7 0.16 2 N -6.11 -0.33 3.91 -0.03 7.84 0.06 LG5 ,Mtn Max V 15.96 -0.0 -12.59 0.00 -22.73 -0.17 LG4 Min V 7.00 -034 12.59 -0.00 23.31 -0.11 LG1 Max V; 6.41 -0.27 12.6 -0.00 23.30 -0-12 LG3 Mm V� 16.38 -0.10 -12.59 0.00 -22.72 -0.16 LG2 Max Mr 16.38 -0.10 -12.59 0.0 -22.72 -0.16 LG2 Min MT -6.11 - -0.33 3.91 -0.03 7.84 0.05 LG5 Max M 7.00 -0.34 12.59 -0.00 23.31 -0.11 LG1 Min`My • 15.96 -0.05 -12.59 0.00 -22.7 -0.17 LG4 Max -6.11 -0.33 3.91 -0.03 7.84 0.05 LG5 _M, MIn.M 15.96 -0.05: -12.59 0.00 -22.73 -0.17 LG4 56 25.00 M 16.62 -0.11 -13.74 0.00 -26.78 -0.13 LG4 MiriN -16. -0.42 : 4.24 -0.03 9:13 -0.00 LG5 Max V 15.52 -0.11 -13.74 0.00 -26.78 -0.13 LG4 Min Vy . '. "A2.7 -0. 13.69 -0.00 27.39 -0.26 LG1 Max V, -12.93 -0.35 13.66 -0.00 27.39 -0.27 LG3 Min V= " 15.52 -0.11 „ -13.74 0.00 -26.78 -0.13 LG4 Max Mr 15.62 -0.11 -13.74 0.0 -26.78 -0.13 LG4 Mlh MT" -16.43 -0.42 4.24 -0.03 9.13 -0.00 LG5 Max Mr -13.27 -0.44 13.59 -0.00 27.3 -0.26 LG1 MIn;My 15.52 -0.11 -13.74 , 0.00 -26.78 -0.13 LG4 Max M, -16.43 -0.421 4.24 -0.03 9.13 -0.004 LG5 Min w -12.93 -0.35 13.66 -0.00 27.39 -0.27 LG3 3 C01 78 0.00 Max N 19.811 0.04 11.97 0.02 -3.12 -0.13 LG1 Min N 6.05 0.00 3.78 0.04 -0.98 -0.05 LG5 Max V 16.72 0.07 11.88 0.02 -3.10 -0.12 LG3 Min'Vy " 15,59 -0.0 -12.11 -0;02 3.14 -0.13 LG2 Max V, 16.81 0.04 11.97 0.02 -3.12 -0.13 LG1 Min% 15.59 '- - -0.02 -12.11 -0.02 3.14 -0.13 LG2 Max Mr 6.05 0.00 3.78 0. -0.98 -0.05 LG5 Min;Mr 15.59 ' -0.02 -12.11 -002 3.14 -0.13 LG2 me)( M 15.59 -0.02 -12.11 -0.02 3.14 -0.13 LG2 'Min My 16.81 0.04 11.97 0.02 -3.1 -0.13 LG1 Max M, 6.05 0.00 3.78 0.04 -0.98 -0.0.5 LG5 Min M' 16,59 -0.02, -12.11 -0.02 3.14 -0.13 LG2 85 25:00 Max R -2.5 -0.06 3.90 0.04 0.00 0.03 LG5 Min -7.01 - -0.04 12.33 0.02 0.02 0.10 LG1 Max V -6.96 0.01 12.23 0.02 0.02 0.10 LG3 M16,Vy - -6.71 -0.1 -12.44 -0.02 -0.01 0.09 LG2 Max V, -7.01 -0.04 12.33 0.02 0.02 0.10 LG1 MWVZ -0.71 -0.10 -12:44 -0.02 -0.01 0.09 LG2 MT -2.53 -0.06 3.90 0.04 0.00 0.03 LG5 .Max Mm MT -6.71 -0.10 -12.44 -0.02 -0.01 0.09 LG2 Max M -6.95 0.01 12.23 0.02 0.02 0.10 LG3 Ask ® RFEM 4.10.2680 - Arbitrary 30 Structures solved using FEM www.diubal.com Josef Gartner GmbH Page: 22/54 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S Tproject . / Structure: BenchmarkGestell-V3Dowel I Date: 08/02/2013 � \AC\AO CAI+ 1\ITCH\IAI ['/1 �/'+G G� I n�/'i rnmhin�4innc Member r Nodg o ; Sh68r Fmoes [kN] Moments [kNmJ - No. CO NO N .:Vy Vz Mr My M Cortesponding Load Cases 3 C01 Min.M -6.64 -0.05 -12.35 -0.02 -0.01 0.09 LG4 MaxMZ A.95, 0.01 12.23 0.02 0.02 0.1 LG3 Min M- -2.53 -0.06 3.90 0.04 0.00 0.03 LG5 4 CUT 70?:` BX:. -6 0.02 1.82 0. -9.83 -0. L Min N -38.77 -0.14 -6.29 -0.01 32.07 -0.18 LG2 Max.yy .55 -0.0 1.82 0.04 9.83 -0.03 LG5 Min V -38.77 -0.14 -6.29 -0.01 32.07 -0.18 LG2 Max Vz 37.24 -0.14 6.22 0.01 31.87 -0.17 LG1 Min V, -38.77 -0.14 5. -0.01 32.07 -0.18 LG2 :'Max Mr =6.55 -0.02 1.82 0.04 -9.83 -0.03 LG5 Min Mr -38.77 -0.14 -6.29 -0.01 32.07 -0.18 LG2 Max My -38.77 -0.14 -6.29 -0.01 32.07 -0.18 LG2 Min M -37.24 -0.14 6.22 0.01 -31.87 -0.17 LG1 MezM z -6.55 -0.02 1.82 0.04 -9.83 -0. LG5 Min M, -38.77 -0.14 -6.29 -0.01 32.07 -0.18 LG2 78;i. '' ,MOO ., : Max N " 16.8 . 0.04 11.97 0.02 -3.12 -0.13 LG1 Min N 6.05 0.00 3.78 0.04 -0.98 -0.05 LG5 MaxVy 16.72 0.07 11.88 0.02 3.10 -0.12 LG3 Min V 15.69 -0.0 -12.11 -0.02 3.14 -0.13 LG2 Maz'VZ 1.6.82 0.04 11.97 0.02 3.12 -0.13 LG1 Min V, 15.59 -0.02 -12.11 -0.02 3.14 -0.13 LG2 MazMr 6.05 0.00 3.78 0. -0.98 -0.05 LG5 Min Mr 15.59 -0.02 -12.11 -0,02 3.14 -0.13 LG2 M�;My , 15.59 -0.02 -12.11 -0.02 3.14 -0.13 LG2 Mire M 16.82 0.04 11.97 0.02 3.1 -0.13 LG1 , Maz;Mz . 6.05 0.001 3.78 0.04 -0.98 -0.05 LG5 15.59 -0.02 -12.11 -0.02 3.14 -0.131 LG2 5 COI 681 :0.09 Max%N A 1. .0 04 -11.66 -0.04 L Min N -57.78 0.00 0.03 0.00 38.33 -0.30 LG2 >. Me Vy <57.78 0. 0.03 0.00 38.33 -0.30 LG2 Min V -11.09 0. -0.01 0.04 -11.66 -0.04 LG5 MazVz - ' -57.78 =' 0.00 0. 0.00 38.33 -0.30 LG2 Min V, -56.32 0.00 -0. -0.00 -38.08 -0.28 LG1 Max'MT '-111.09 0.00 -0.01 0.0 -11.66 -0.04 LG5 Min Mr 56.32 0.00 -0.03 -0. 38.08 -0.28 LG1 M8%;My -57.78 0.00 0.03 0.00 38.3 -0.30 LG2 Min, M, 56.32 0.00 -0.03 -0.00 38.08 -0.28 LG1 Max Mz "-11.09. 0:00 -0.01 0.04 -11.66 -0.04 LG5 Min M, -57.78 0.00 0.03 0.00 38.33 -0.30 LG2 1.82 0.04 9.83 -0.03 LG5 Min N -38.76 -0.14 -6.33 -0.01 32.07 -0.18 LG2 Ma7c:1/y ,' -0.55 -0.02 1.82 ' 0.04 -9.83 -0.03 LG5 Min 38.76 -0.14 -6.33 -0.01 32.07 -0.18 LG2 M, .V ,"-37.23. -0.14 6.2 0.01 31.8T -0.17 LG1 Min_ V, .38.76 -0.14 -6.33 -0.01 32.07 -0.18 LG2 Max,Mr. _ 4.55 -0.02 1.82 0.04 9.83 -0.03 LG5 Min Mr -38.76 -0.14 -6.33 -0.01 32.07 -0.18 LG2 Max;My . 38.76 0.14 -0:33 -0.01 32.07 -0.18 LG2 Min M -37.23 -0.14 6.26 0.01 -31.87 -0.17 LG1 "MaxMz '.55 -0.02 1.82 0.04 9.83 0.03 LG5 Min PUL -38.76 -0.14 -6.33 -0.01 32.07 -0.18 LG2 1 63 . _ 0, -7.2 -1.83 0.04 9.82 -0.03 L Minty -38.70 0.14 6.33 0.01 32.07 -0.18 LG2 Max V -38.76 0.14 6.33 0.01 32.07 -0.18 LG2 Min,VY -7.20 0.02 -1.83 0.04 -9.82 -0.03 LG5 Max:UZ 38.76 0.14 6. 0.01 32.07 -0.18 LG2 Min V, . -37.23 0.14 -6.2 -0.01 -31.87 -0.17 LG7 MaxMr-7.20 0.02 1.83 ' 0.04 9.82 -0.03 LG5 Min Mr 37.23 0.14 -6.26 -0.01 31.87 -0.17 LG1 -. Max:My 38,76 0.14 6.33 0.01 32.07 -0.18 LG2 Min 37.23 0.14 -6.26 -0.01 -31.87 -0.17 LG1 ,M Mex'Mz -7.20 " 0.02 -1.83 0.04 -9.82 -0.03 LG5 Min M, 38.76 0.14 6.33 0.01 32.07 -0.18 LG2 68 ; 210 00 MtN A 1.09 0.00 -0.01 0.04 -11.66 -0.04 LG5 Min N 57.7 -0.00 -0.03 -0.00 38.33 -0.30 LG2 ,Max V I1.09 0. -0.01 0.04 -11.66 -0.04 LG5 Min Vy -57.78 -0. -0.03 -0.00 38.33 -0.30 LG2 Max Vz ' - 56.32 -0:00 0.03 0.00 38.08 -0.28 LG1 Min V, -57.78 -0.00 -0.0 -0.00 38.33 -0.30 LG2 Max-Mr -11.09. 0.00 -0.01 0. -11.66 -0.04 LG5 Min Mr -57.78 -0.00 -0.03 -0.00 38.33 -0.30 LG2 Max=My , ' `c67.78 -0.00 ' -0.03 -0.00 38. -0.30 LG2 Min M, 56.32 -0.00 0.03 0.00 -38.08 -0.28 LG1 M6k,% 41.09 0.00 -0.01 0.04 -11.66 -0.04 LG5 Min U- 57.78 -0.00 -0.03 -0.00 38.33 -0.30 LG2 7 Col Max .1 Min'N 5:93 0.02 3.78 0.04 -0.98 -0.05 LG5 Max* ' 15.59 0.02 12.11 0.02 3.14 -0.13 LG2 Min V,, 16.72 -0.07 -11.88 -0.02 -3.10 -0.12 LG3 Msx Vz ' -15.59 0.02 12.11 0.02 3.14 -0.13 LG2 Min V, 16.82 -0.04 -11.97 -0.02 -3.12 -0.13 LG1 5.93 0.02 -3,78 0. -0.98 -0.05 LG5 Min MT 16.82 -0.04 -11.97 -0.0 -3.12 -0.13 LG1 MiU My 15.59 0.02 12.11 0.02 3.14 -0.13 LG2 Min M 16.82 -0.04 -11.97 -0.02 -3 12 -0.13 LG1 Mex w 5.93 0.02 3:78 0.04 -0.98 -0. LG5 Min Mz 16.59 0.02 12.11 0.02 3.14 -0131 LG2 ® RFEM 4.10.2680 -Arbitrary 3D SM.Wres solved using FEM www.diubal.com N M C N O J o c M ao .0 C E c Z cl N +� c aL v> O Z LU .=Cw$ OD co u. c! C Y c 0 '\ V N 0 H C co u C C a` u Q f t U a u a u U J c I U ��44 uu?? C�C�C�C7C�C�c7C�C7C�C�C7^NU' ss22 CN7(�' �C�' t7C9C�(�(JU' (GNU' UN' C�' C7CN7NU' C�(�J(�' C7C� �p NU' (�C�C7c�U' U�' C9(�(9C7C�' NU' C�U'' (M7C�' C7GC9C9(9C9 Y sT C�' C9C�JC7NU' C9(�C'3NU' C�JC�' NU' C�' C9gUt�C�' C7U' (�(�' (�l7 C�C� J J J J J J J J J J J J J J J J J J J J J J J J J J7 JOc+)JS J JSJ(MOJS1i JOJSJ0OJ0JSJCJGJC JSJGJCJCJOJOJOJOJGJCJCJOJCJC JMJ�JM JG JMJMJrar JMMJStfjJSN�JNO JpBIf� JV'�(OI(ppQMNSNC..GCCCCC JIO JOOJSC M OMM O��O.r-�n.-O�OS.SSSSSSSS MJM NNMJ pJ0pJO pp UJ�) S�mJCWJOi 0J01 aaOC{� ' O MJYi OJ .JMM �gQOgOQ99999QGCOCCCOCCCO .� Nrr Nrn.NnrnNr aDOOaD OOD NOO OOD a00 p SS SS SSS SSSNNI��N NOOON N NSSSSS$SS N p p Q pp p p OSSoo S$oOS SS ,uoi. (nNa NNm�. NOOD�gr.M-SSO,7COrq 00 C� R(NOINpRMC?RMM(?R MOOOOOOOC GCOOC COOGO000 COOGGO000�������0.-«�fV fO.tONtONN W fONNO 00 O �ooc�oog'o,00�0000`b'ogo,00000$oS000,0000000$o. oBSSooS0000000a$.8$�$S000�Soo��0000��oa�000 coocdod0000dgogqqqc?dqc�Qq6o '00000g0goqoo'0000000000c000000coocco'cooc00000000c000ciooc000 � pp pp op GMDM(7�M NGMO,N(�NCMDM ��pp ��pp 00000000 OOOpO00000N00000�0�� e��} tt�� -0000000�����000000 pppp ��pp �O /1ppp� CCpp pp�� ((pp aapp CCpp ss�� 0010000)000 �OO.OMI,ONN.� -(o(c. co<q�u�co(q.(ooapaQooap0000000aoopooapapuicoQoapc00000codcoogggqoq.gc�iggqc? ,OOW001�1AOW oo�or r�nono�aQoonoapaQooapr cN�� •. y) NYC �V NV`d �tN V' O�.-0��0.-��0�� MMMlMiMrO�f O. O0 NNCgq olgqWNAN� NM 000 O�pO O nnn rin wn O co M MMMMM CO q M .. 0 mq- 000000000000 -N07000p�N 0 090990000000000000000000 0O(QOi(0RvCiCOoi000co0Ir aocq(Q0cVP Gigg ' M NIn.M ,�f, Nrti NfM�,NNN;fM�,NN n000000000 pppp ppf� pp�� pppp ee�� pppp ��}} �:$i OOOM�WQrO n I� connroaonli ad ,��000OI'�.'O 'ro<d( (etoma6romso(o<oro<c(dm(e(oNrom(c(d �+i mco1� �77 }�} ui ofaal(�of aa �qw, vvo�+r�vv9v7vvq. v<c2oR.R Nf-F .'N .: Z.Z > TA N F 1-> TA Z !-f >...T A-NZZ A N!-1- A Z Y TA NZZ MNF f- A Z 1-f� Y.A NZ �; N!-F f. A' Z r;g O US d,o o 4 tz M N CD CD cpn' _. V I V 0 ! lZ n F Josef Gartner GmbH Page: 24/54 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S Project:A C2 ` Structure: BenchmarkGestol[-Mows[ I Date: 08/02/2013 ■ MFMRFRS - INTFRNAI Fr)RI-:FS Load combinations Member NgBa L6tfQn Shear forces, [kN] Moments [kNm] -- - - - No. CO Nb z v 2 (Ctltj, . ,. N - Yy VI MT My M= Coilesponding Load Cases 51 C01 Min V -0.47 -0.05 3.87 -0.00 0.05 0.01 LG5 Max Vz -0:79 -0.02 12.24 0.00 0:01 0.03 LG1 Min V, 0.15 -0.04 -12. -0.00 -0.00 0.04 LG2 Max:MT -0.79 -0.02 12:24 0. 0.01 0.03 LG1 Min MT 0.15 -0.04 -12.36 -0.0 -0.00 0.04 LG2 Maxi, 4.47 -0.05 3.87 -0.00 . 0. 0.01 LG5 Min M 0.15 -0.04 -12.26 -0.00 -O.OD 0.04 LG4 Mex Ali} 0.15 -0.04 -12.36 -0.00 -0.00 0.04 LG2 Min M, -0.47 -0.05 3.87 -0.00 0.05 0.01 LG5 51 ' 9120 Max'N 012 0.07 13.48 0.00 11.25 0.06 LG3 Min N -17.69 0.05 -13.63 -0.00 -11.51 0.08 LG2 Max Vy 0.72 0.07 13.48 0.00 11.25 0.06 LG3 Min -0.86 -0.02 4.37 0.00 3.72 0.02 LG5 ":Max W 0.43 0.06 13.57 0.00 11.34 0.06 LG1 Min V, -17.69 0.05 -13.63 -0.00 -11.51 0.08 LG2 0.43 0.06 13.57 0.00 11.34 0.06 LGt Min MT -17.20 0.05 -13.55 -0.0 -11.41 0.08 LG4 MN x My 0.43 0.06 13:57 0.00 11.34 0.06 LG1 Min M -17.69 0.05 -13.63 -0.00 -11.51 0.08 LG2 Max:Mz -17.20 0.05 _13.55 -0.00 -11.41 0.06 LG4 Min M- -0.85 -0.02 4.37 0.00 3.72 0.02 LG5 '0.01) ex . 2 Min N -27.59 0.02 -3.47 0.00 11.25 0.10 LG3 F Max;Vy -8.17 0.04 0.08 0.00 3.72 0.03 LG5 Min V 16.33 0,01 6.98 -0.00 -11.41 0.04 LG4 MaxVz' s16.87 0.01: 7.54 -0.00 -11Z1 0.04 LG2 Min V, -27.59 0.02 -3.47 0.00 11.25 0.10 LG3 Mex m -27.21 i 0.02 -2.95 O.OD 11.34 0.10 LG1 Min MT 16.33 0.01 6.98 -0.0 -11.41 0.04 LG4 Mex.My -27.21 0.02 -2.95 0.00 11. 0.10 LG1 Min M 16.87 0.01 7.54 -0.00 -11.51 0.04 LG2 Max:Mz -27.59 0.02 3.47 0.00 11.25 0.10 LG3 Min M, -8A7 0.04 0.08 0.00 3.72 0.03 LG5 47, 258 80 Mdx-N 22Z -0.02 2.13 0.00 3.65 -0.12 LG4 _ Min N -56.8 -0.14 1.59 0.00 13.80 -0.31 LG1 e -26A1 0.04 1.80 0.00 7.23 -0.03 LG5 Min V -56.85 -0.14 1.59 0.00 13.80 -0.31 LG7 :. Max Vz 18.64 006 2.79 0.00 -2.28 -0.11 LG2 Min, V, -52.46 -0.12 1.12 0.00 12.38 -0.31 LG3 pIUMT -56.85 r0:14 1.59 0.00 13.80 -0.31 LG1 Min Mr 18.64 -0.06 2.79 0.0 -2.28 -0.11 LG2 Max`My -56.85 -0:14 ' 1:59 0.00 13.8 -0.31 LG1 Min M 22.55 -0.02 2.13 0.00 3.65 -0.12 LG4 Max•.Mt -25.41 0.04 1.80 0.00 7.23 -0.03 LG5 Min M-52:46 -0.12 1.12 0.00 12.38 -0.31 LG3 53 1 14.66 -0.01 13.90 8.74 LG4 Min N -15.61 -36.66 18.55 -0.03 -11.13 -22.08 LG3 MeX Vy 16.65 14.6 -23.18 -0.01 .13.90 8.74 LG4 Min V -15.58 -40.3t 18.65 -0.03 -11.19 -24.29 LG1 Max>Vz -15.58 -40.31 18.6 -0.03 -11.19 -24.29 LG1 Min V, 15.65 14.66 -23.18 -0.01 13.90 8.74 LG4 MaX Mr -6A6 -19.97 -1.19 0.00 0.75 -12.05 LG5 Min MT -15.58 -40.31 18.65 -0.0 -11.19 -24.29 LGt ;Maz.My 1&65 14.66 -23.18 -0.01 13. 8.74 LG4 Min M -15.58 -40.31 18.65 -0.03 -11.1 -24.29 LG1 `Mak Mz 15.65 14.66 -23.18 -0.01 13.90 8.74, LG4 Min M, -15.58 -40.31 18.65 -0.03 -11.19 -24.29 LG1 53s 60:00 " Mak R 115111 14.48 -23A6 0.00 0.00 0.00 LG4 Min N -15.38 36.90 18.56 0.00 0.00 -0.00 LG3 MaXVy °; 15.71 14.4 -23.16 0.00 0.00 0.00 LG4 Min V -15.30 -40.61 18.66 0.00 0.00 -0.00 LG1 Max'Vz , -15.30 -40.61 18.66, 0,00 0.00 -0.00 LG1 Min V, 15.71 14.48 -23.16 0.00 0.00 0.00 LG4 Max';MT -15.30 -40.61 18.66 0. 0.00 -0.00 LG1 Min MT 15.30 -40.61 18.66 0.00 0.00 -0.00 LG1 Max.My . 15.30 -4061 18.66 0.00 0.0 -0.00 LG1 Min M -15.30 40.61 18.66 0.00 0.0 -0.00 LG1 :Max"Mz 15.67 11.06 -23:05 0.00 0.00 0. LG2 -15.30 40.61 18.66 0.00 0.00 -0.00 LG1 58 C 1 4 -,.0:. Max; 1 0.11 13.74 0. -26.78 -0.13 L Min N -13.27 0.44 -13.59 0.00 27.39 -0.26 LG1 MaXVy -13.27 0.44 " -13.59 0.00 27.39 -0.26 LG1 Min V 16.52 0.11 13.74 -0.00 -26.78 -0.13 LG4 a 'Max V= 1552 . 0.11 13.74 -0.00 -26.78 -0.13 LG4 Min V, -12.93 0.35 -13.66 0.00 27.39 -0.27 LG3 Max Mr ` -12.93 0.35 -13.66 0.00 27.39 -0.27 LG3 Min MT 5.93 0.29 4.11 -0.0 7.96 0.01 LG5 Max M, . -13.27 0.44 -13.59 0.00 27.3 -0.26 LG1 Min M 15.52 0.11 13.74 -0.00 -26.78 -0.13 LG4 Max.MI 6.93 0.29 -4.11 -0.03 7.96 0.01 LG5 Min M, -12.93 0.35 -13.66 0.00 27.39 -0.27 LG3 59, 215 • `Max'N 1"6. 0.10 ' 12.59 -0.00 22.72 -0.16 LG2 Minty 6.41 0.27 -12.65 0.00 23.30 -0.12 LG3 MaxVy T 0.34 ; -12.59 0.00 23.31 -0.11 LG1 Min V 15.96 0.0 12.59 -0.00 -22.73 -0.17 LG4 ;. .'.Max Vz 16.38 0.10 .- 12.5 -0.00 -22.72 -0.16 LG2 Min Vz 6.41 0.27 -12.65 0.00 23.30 -0.12 LG3 ® RFEM 4.10.26M - Arbitrary 3D Structures solved using FEM www.diubal.com co w C N r N N J o c o E rn N W O N J 0 Z Y LU 0 i Z .Qw$ o m �D = N g 0 U. to co 06 � n O� m c N �J 'q' U O d J NZN F- Z m w m w U qc o t� qq C7-j -1-j-A-i C U' C7 C7 C9 U' -j-jC7 C9 9-j-j-i-j- U' r C7 C9-iC7-iU' C7-1 �-1 J J J J J J -j-------tj-j-j J J J J J J J J J J J J J J J J J J J J J J J J J7 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J -J j-i -i-i -j-, J J J J J J J J J J J J J J J J J J J J J J NN r n r0 r r O r 0 0 0 0 0 0� 0 0 0 0 0 0 0 0 S O 0 0 S 0 0 O O O S O O O O S O O O O O O O O O O O O O O O O O O O O O OO O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 8 0 Ng9gqqqq9999991qqqqqqqoqqq�qq�qqqqqq�?ggq9qqqqqqq9qqqqqqqqqq45'�?4R4444449�49444R5'R94o49004 .. OMr MM N.r rrr NO rr rr rr NO rr r� NO r9 rr0rr0NO0rrrr rr 0QMM4'f to M Mrg VC'1On9Oq OoV�qoaC� �go�c.Cy� MMNmn N NN99090000000g0090999C>99000090ooggqcqqqoggqoc?ggogogogg ' giMf oS oaO{ osMh oO7 gO oOO o•Cf ggoogo C 0 op$8o8o$8$08 p$8oS$888S80.$$080808$8 888o88$S$8o•88$8$S$oo8 S888p888$8op88S$588885 08 F0490ccgoogoocoq0qoo0ggqq00000cqc,000000gogg0000coo0oci00000oo900990900999oo090990099990099 mmrnrnma mnlnOnN nmrnnmmnnn!rmn� 201Nn No(4M rz.,O:929OrrO1MmN07rQ�t�p1MDNC1:m.-rOfOMp(0)on�tOp MmoIDpnOmMtOnotOfOlO<mONrmm <GNCON�NmtfpO�Nn an nn Nfh NfV f?cVr'MM�M(7-fM�MM��?MMM�Mpj fM �.M tM�MColt7vM It'T 'To) tm MT7 ' = nomom CIA p N 0 gpp aanmongo��ggrCi�c� �p r�p O b O O r 0 O r 0 m�nn�n�nnm�nninn n�nnn�mn�na} n Mimm�M�nua 0 O O O O O O 00 O O 0 0 0 0 O O O O �:O O OO O O O NN ` �`8�`goo�`8`�oro�`8�0 00 O yp g 00000o'ggqqqqqq999q9qqq9qq9999990qq99099099909qqq0g90999og999099o9 99999ggqq4qq9qqqqqq"q LL >' -01*=a �. N;. m:rm YOD�OfmO N �� m<O�pN m N {pm�p p{�pp QpmmvN n l9n rlhYrnnOnaT. O.n �tS maf.MNV NM n NMOn NOMm Or OlofO.W r'm mn v, goo nogn st0<mY nmtO er n�ngaomnrO Olnp rO.NNC. NN OC.N mmpmNOmrnn pn`r Ofn NOnCppN mnMtfimvmmMYm r9 mnn'.n 10 _'rrM CCtOCI+>.V'�t7C�V':m Mt�i tG Pi �f(G �D f�>N<C lC 'Nl a-O>fC l7.M a� thm �lM aG �fV fC.n l�tC fV f�I�NfGr V`.q'et 0'Q V' C�:v Y1�hCAR(O:Ih h-�C Oi�oa'15!0 Zr. e�'.r r �-r N. N'r NN, N N NN N - i� C:,ni�g�c.`L a��C�l�, i�i�r22r C,'-..XC1�i +N iN��`L'1�r2C�%�^�N�2 C� cfxp IS 1 1 Y( z" o 0 0 zumi m m g s 8 a 0 9 t`C1 r VI M C N ~ C R DAD Z E N C R c a vi o M } ffi Z Y -j MWS Z �D� L CJ� LL C C 00 O /It^li vN� O m �4 LL d C a LL Q Z k z t LL LL U 0 c v 0 U MUC�JC9 u� MU' C�C�C�C �' C�NU' C7C 17(�' t7C C7C� NU' C�lC7C7C7C9 C7NU' C NU' C9C�C9C C�/C U' C9�UC�' MU NU' C7- CJUN' c-7C�(-J-1----CSC-C�CJC-C��rUC�NU' JJ J J J J_J J J J J J J J J J J J J J J J J J J J J -j-j-j-jC J J J J J J J J J J J J J J J J J J J J J J J J -j-j-j-jt-jt-J(9C-JCJC-J`(3(-' J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J JJ J J J J N O 0 t6rls Me�}l ..pp lnr Nr Ml6h�s Nt6r�s Nrl6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 06f0p1 OMOO61 MMISM^�Ml6MMM MrN�C1 O r p r 0 r r O r O r O r r O r r r O r l/)�6y� �1 Nr1sNM NNNNV'NNa sl rl6 l6ls16 l6 i17e- O 0 0 0 0 0 0 0 0 0 0 r r O O r r O r r O r 0 0 0 0 O O O O O O O O N90999999999999999999999999q'oc00000000o999999999999�?99999999999999999499999999999999999 .S Y _sf MrMOfn pfM MM MM 61 Mhaaf� E�pppp CO cm vnv Oln�nvi hO1h NOD�aDVOD V'N aoNao NrNrN NNq . �O. . . . . pppl��pcppvn�p 0O 000 SOOOOS Mrr r01 Of Oaaf� ppn 'Ch raoNr rN CD .ga{cq Os� p •f NaO eF aDY.N tON�rOV'�-rat O.r-�Or O00 cO a0a00 �aD�V �aD� dgq.'ri��ciul�ls�-9-. 6g;ai6T616 0iC161TTT ogOgOOOOgoac?gmTmTgc?Mc?C2MT06/d6gi6cj6f6ic?64�6 q�U 666L?V(? !1 C OTTMTmgcVMTC?T �. SSOOOOOSS OSOOSOOSOSOOOSSOS 00000000000000000�000�0 OSO SSOOOOOS OO S000 OOS OOOSSSSO OSSOO �oqoggqqoqoqooggqqoqoqoqocQqciqoqdqooqoqdcqdoqdc�ogoqooqdddd6dqoqqqqcq9996d.�ogogooqoqoc?goqo .. ODlehr rMn1� 1. MrM pp/60OD h nOfaaOf Oi� l(�C�n�<C rCV ft�G OrrCV ��^NIA Ntn��f�O�1? 4.:.N93 CMcorNnranc?0nrN 1-r10 MN n�1 "I�lM0�-l77 cN 04088NN 0 Ot6a1[ bU�e rl1p OO. rfV�l� rtVO1� N1n��N��tsf�Nu'1�.� Cp.M Cs rrN��{{ :cco?;M: MMN�-M N eClO 1OAD coNNc.,MNNnaprm6frtnrin...Nt?ft?n.Nn1.i- uCOr70r.r0 /?-Cr.O-QGOq 00O0rOMt6 ra.b MYr Is �If�ls rlf) �' `8,�`$,o�o c�$1,�0�6o1og',�ga ogoSogg� go oSoSo$S$$$ 8SS88SSSSS o$oSSoSSS r 4Rggq�ic24oqqqc?ggo4ogo5i000cfoQ _�ro����o�o��0000��00000 Oogcoocgogoqoogoqo4cSi000goc�oqodcgoqqqqqqqqgqqqqcooqcgooq000 m' 'r 61r tCpp ee}}Of tOr V'iD� MrO1M COMt6�p N. aNV;O1NTNaD,Y;hVaD�-:Nr�6N.N Mr::r �V rt6 Nor. 61N6/r M:r 6f rCMy:CA Oh01le0h06f WnaD61�:rMO6Ya001 U3NOD� :CD M1s M.Vy� tCppa CD CO fs co:CS CO t0 tcpp Oar hp>.a Vn CO'prN�tlfN rcO hCO.rleisa-COr00 �ODY.%VV3 -�u`ti o�tM.nMNGna?ri cl:vi tMNCV t�O'CC O r-6fV 01GCV tC '..r rr.r r r +NN:N Nam N N;� 1� (�f cQ <P I�CVI� t(�I.fQtf�/CV fG'h^tG �f>tC 1l7 (O'cO Y1 N rr �- r.. CV 1�o w r-: dfV6 (6 CV(s OY 4.00 Y_O YO:vgf�fCg6rl tOgcO NCV CV. 'Nr .�. N,N NNN NNN ;N .N Z' . . ire. .Cc. �:. �.� ., Cc i'i��1(Zi!.�i �N7';J'j�rL'� !e ice i� >� ` e$ �J e ! !. !! Ti�SNi��L i'LG�;S�Z y>��N��4�'c j�ZZ�i�lN�iG'Lii C. C C .� E C C_'r C:Wf� C� �... G G. C C C C C ,!1O C'.: '.. -Sig?� C' g g g g { i M lZ O _ g O 3 3 V N O 3 0 A o 'W a 77p ..3 3 33333 3 3' 3 �3�3 3 3 c mcc3 _3 m3 5 3m9x�3K3.x�°�C�p3:�C3IX5ARI�T-WV C333 3 �3333:3 3 g �C3'x��g;�-�3��+33�t5�3�CSx3.�c3 3 3 3 'g 3333 3, �'33SmCfwcxr'.F33 m3�3m3 �. 3x 9 Fmk ' 3�C 3:x a <.Z .3cc33G«<ZZN3v3$�3�3�NGG<G'�G,Z � 3��3`�G,G G<Gz�Z 3333� N�v�4«2ZN3's3s��<VGKCCYZ ; �Cn�WO�ALS7C�ApOAG�tpOD GON-4V NO4 N V VOW 0.0OWM0VWVVWV +OWD�ApOmAV,(OTOWOV�1 � WI< Op�p�1lO9fb.. ONONVNONONVN bN- W �OV' �CoOApNSpAo V W �pA OOVW+-V+A- VDVNpVONSO . . . AOVwpOA�OANV+ m4.Af (O.P.P to tTi:NWOt(W7�+tW0-A+CO7iW O000popbppbbpbpbpbpp666666bpb666,66pbb_bbbb6bpbb_bpbpbbbbp6 sG aOD.P OONOw(hO.PwUOi�wfOJIA V�'tOJIV-�fTN OV+OVCOn�00fNOfh (Ji S'+ f71 popboGob0000boopopobpoo6000boopopoop0o0ooc0o0o0oo066o6o6000 Of 0DN010DNNS NOIWVO1w Vww S.OV w01 lONSO UtNCOA<OOO.:tONSSS�SS O+S:� SS �. W L1W W-.WWO+WWWWO-!L.1WOWW+Lppi�W+pWO��:LJWjpLpJ��W W.A+WDPW+N�JA:+IJA� W+WW+IJL..IW:+WL7WW+(JW+WL(�/W+'W4W-4NV �NAVbf (A7�LN7NGN�NA(t(Tn�O+W) N VVp<WOMW(WNO� w++ WONNNSVOAOA pVp (N(�,D�V.VppNNA+NAIT O+Opp wCOm 6o'66o6600bbo6ob6ob6006bo6obbboboobbo6 6bo6boob66ob66boboo666obo6ob6obo600bo6ob6obo6006� $$$S$$S 0SSSSSSSSSo SSS'00'8' S o8S8SS SS$o 8SSSSSSS`b'S oS$8S8SSwo8boSSwSSwowSS �$SSSSw 3 3 600�D600w6�Doo66�Doo6o6opo60066opo6o66 iOOpONofOOptOONpIOfpOIOOotpOiOlOpNp �O�CWTOWWOW p66o6600b66o6 W(WTOWtWd-W+tON�S�fO+tO CNO�(NO-fT�.�(T+..��(T�� poobOopopbObpop000pbOowbbbob�otowbb4b7Wob<T��a1TcnSlTvnln+plTN-A Aw OAWfT(11A W.P (71AA0 OAAO AAW W~WW WWWW WWW.PAAA AA OA OAAA. 3 3 66b6ob6o6b6o66bbo6bobbbo666b6666b66b66 bbb6b6bbb666bbbb666b66666bbbb6666b66666666666666" 000c NNNN oogoocg0000000g000c000c 000c00000' N N+N NN NN NNN NNN +WN+ NW+NW ocScoogcc000000000cooc NN NNN WNW NN+NNN+NNN w oo�o�0000000000000000 +�JI Uf+Ot(T+ +iTN+(T MOMU1+ rrrr(r(�rrrrr,r,�rr]](r(-�rrr(r(-�(nr,(r(-�rrrrnnrrr(.]rrrr-r[;-�l-]rH�r']rrrrr�ryr(r(,]]rrrrrrrrrrrrrrrrrrrr((r-'�rrrr��r]]rrrrrrrrrrr��r]]�r�]]rnnrr. G��A�+i�Fii��Nl+(JtAN�biAFON�Z��FJN���IiITNih� �N��AN��AZIA�(�T n p� n m 0 a ■ z Z n v O C1 .Z 7 N o N f6 COD WOG) ?ODm -n T N �c N C C YI m ma SZ= m Z w' O01 ;u 3 Pt D m v z CO) 3 3 C 0 S aD J N 'J V/ co C N N J N o c O L c c M N W cc m — a co wl o Z LLI Z_ LL Eat �Dn a. (9 � N orn , ''Mn COO vN� O 7 g m 'C l6 R U 0 a c ((�j�N1(Q�N(C�J t0 f(f(���(qJ f�yJ ttt[[[}}}�(Q�Mt(�� (q�• Of7 (gJNN (�J•l(�`� JJ��J'J JJJJ 5(�� C�`�(q� u) N(s� ((',��NN q�` NN(((���N(('j7 NNl(',��N NNNt(��((�JN((�N �p�J J7J J�JpJ J�IJJJ Nt(f�� t((� JpJ .�.IJJJ�J Jp�p�JJCJppJ�CJDpJJJ�JJp J���Jp,JJJJJ�JJ7JJp MJJ�JJJ7{{ OOO OOOOOO�O�SOOOSOO O . . .-. . . CJJpJ'pJ'OJJJJJp �SG.M SN NOSM OSOSOSSSSOS S$BSSO � gg5'qgqq44g�?gqqgqqqqqqq ,000OOOONOq . . ..-�n-,O� ggqqgqqqgqqqoqqqqgoqqoq ,$0.8SO8000 00000000000c� v#96ul6du?uf660 o0000000000000000 m'Ol'OO MMSMa�--�.�-0��.�-:O.^-�0.�- O M M M MMM�MM•-.M lhM�oDn MM�rCO P91�-aD 1�+S p SOSOSSO S�NNb NCO NNOlOf1NS 'GOGOOCO0000.�.-.-.� ppp p p p S S000 S0 OS SOSSSS 9900909gqoo000qqooqoo cVNgNNNgwNgcNNnNthriOVNhMNnN N fV NNNN NN N ��q.- � r•OOOOOOCOOOOOOOCO00 C g 888 0008g8888S$ S8oSo,c88c8So$oo$,o88oeoo8o8800$cSo8o800S O$oeoS88$o8 o8$$g8o$o88 Fgg0000oqoqoqoqooqqoqg'odgdooggoqooqoqq0oqg0qo'00000000000gggogqoqqqqq „088o 0000d000000000000 ccn oOconmt0 .-n.-.-.-nn��n �� Nnnn Nnn NnmaDm MmOD OOMmOOMm tOpp •�Vp n ��M tt�O�O) OD �Opp Of0pppp c0 00 -OMtO M �OOStpb�Ou)m10N�u1 NN�Opp N<ONNN NNNNNN<O s��••NNCO �(ppN.y}OO��V'1nh�f10 000000000000000000000000 0 N NN .- -es ��0000000 � �O'>Oj Ode-{j. o.-mmTM -M Cj':6 C4 6cd N w r�- ON pr w NOON m NN NNM N No" 0 w 00000.0 o o o o o w wO? w. tag waDGO w OO do 0 o 00 oo a qqq gqq ��pp OOpp .e�}�u��Opp 88 00000 n00....' g0oocgoog0000q000qoogo -m�On`-co 1nM vo�nmoco a000co Ln OO o0o00000000gc?ggqqqqgqqg �Mn MNuM� Nco ca Oa�ir��n rnr�'mrnrn. . . rn. u�. m. rn. NnN�NNnurn) momm!a !6-- �9 MMNMNMcM �Oppoo 0000 pp SoO q�4S ooqS:o ��ttOpp LL �OMNNDW to gW (WO MP10NpNOS0Np m 0,2NFn02� 000m0000t�O 0tO O0tGD�a!7:cOiC{ .QlO7.0OtG00OtGp�OtO{ OMYmIMY�`' Nn<NYti .t.OM�-�'�ef7-LtdM-eA�7•lOO�Vl.7- OV N; —IMP -.•N�ON�v.tG-<O OG iGm0tC OOmOO in'rp,:.nN1.D,O9^QN(4C ' N AlFcf cY.CYi cNZZ N !L-l1- T!> N »>gggg ,Z T i N ,.�F+�Ch TC>.c�N2zz T >� N �.'.F f N ��i�ggg 6C `%��� gg'ig;e ;ZnZZ >i?�, ..,� ii�,g»'»ggggg C C ff OOP c'(X _ X wig �gW� g Ci C %,ssl r- g/g0 g'Rg l6g gg gggg{7g g C g )C C' C ggg X'SM .gg �gg'16 .E gglgOg gg gig g i g g `S� f it jl 9 �•, co o i o iZm 2 8 J' ec Josef Gartner GmbH Page: 29/54 GartnerstraMe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S Project : 1G2 . `.` Structure: BenchmarkGestsll-WElowel ■ MFMRFRS - INTFRNAI Fr1Rr..FS Date: 08/02/2013 I nari rnmhinntinnc Member Node Forces [kN] Moments [kNm] _ ..... No. CO Nod X].x ] _Shear N Vy VZ' Mr My M, Corresponding Load Cases 86 C01 Max'MT 34.33 -0.00 -0.05 0.00 0.00 0.00 LG1 MkiMT _ " `34.33 -0.00 -0.05 0. 0.00 0.00 LG1 Max,My 34.33 -0.00 -0.05 0.00 0. 0.00 LG1 Mlii My ` 'X33 =0.00 -0.05 0.00 0. 0.00 LG1 Max_M, 34.33 400 -0.05 0.00 0.00 O.OD LG1 - 34,33 -0.00 -0.05 0.00 0.00 0.00 LG1 87 1 84 9.00 Max N 4.9-74-0.00 1.27 2 Mtp,N 1. 9.31 10.08 -0.00 -1.59 3.35 LG3 Mpx V -0.55 9.7 -10.05 -0.00 -1.58 3.15 LG1 Min. Vy - 4.34 -6.72 7.96 -0.00 1.26 -4.75 LG4 Max V, 4.97 -6.37 7. -0.00 1.27 -5.00 LG2 Mot :Vz -1.00 9.31 -10. -0.00 -1.69 3.35 LG3 Max Mr 1.74 4.53 -0.10 0. -0.00 0.29 LG5 Mki'MT 4.97 -6.37 7.99 -0.00 1.27 -5.00 LG2 MGM 4.97 -6.37 7.99 -0.00 1.27 5.00 LG2 "Allin'My -1.00 9.31 -1,0.08 -0.00 -1.5 3.36 LG3 Max M -1.00 9.31 -10.08 -0.00 -1.59 3.35 LG3 MimIVT 4.97_ -0.37 7.89 0.00 1.27 -5.OD LG2 66 144:20 Max N 4.94 -6.85 8.01 0.01 12.80 4.53 LG2 Min N -1.07 8.95 -10.08 0.04 -16.13 -9.82 LG3 Max V -0.64 9.31 -10.04 0.04 -16.07 -10.61 LG1 Mki'V 4.32 4.08 7.98 0.01 12.75 5.19 LG4 Max V; 4.94 -6.85 8.01 0.01 12.80 4.53 LG2 MinrV= -1.07 8.95 -10.04 0.04 -16.13 .9.82 LG3 Max Mr -0.64 9.31 10.04 0.04 -16.07 -10.61 LG1 :. Min: MT 1.46 4.06 -0.36 0.0 1.34 1-1LG5 Max My 4.94 -6.85 8.01 0.01 12.80 4.53 LG2 :Min, My " -1.07 8,95 -10.08 0.04 -16.1 -9.82 LG3 Max M, 4.32 -7.08 7.98 0.01 1 12.75 5.1 LG4 -0.64 9.31 -10.04 0.04 -16.07 10.61 LG1 88 Col 85 0.00 Max .04 -12.26 0.00 -0.00 -0.04 L Min N -0.79 0.02 12.24 -0.00 0.01 -0.03 LG1 Max, Vy 0.15 0. -12.26 0.00 -0.00 -0.04 LG4 Nlin I .0.54 -0.11 3.88 -0.00 -0.04 -0.00 LG5 y Max V, -0.79 0.02 12.24 -0.00 0.01 -0.03 LG1 Min' VZ "' 0.15 0.04 -12.30 0.00 -0.00 -0.04 LG2 Max MT 0.15 0.04 -12.36 0.0 -0.00 -0.04 LG2 MInMt -0.79 0.02 12.24 -0. 0.01 -0.03 LG1 Max M -0.69 6.01 12.14 -0.00 0.01 -0.03 LG3 Min. - -0.rA -0.11 3.88 -0.00 -0.04 -0.00 LG5 Max M, -0.54 -0.11 3.88 -0.00 -0.04 -0. LG5 MurM 0.15 0.04 -12.36 0.00 -0.00 -0. LG2 86 91.20 Max N 0,7 -0.07 13.48 -0.00 11.25 -0.06 LG3 Min N -17.6 0.05 -13.63 0.00 11.51 -0.08 LG2 Max Vy -0.73 -0.0 4.38 0.00 3.65 0.02 LG5 Min' V ' 0.72 -0.07 13.48 -0.00 11.25 -0.06 LG3 Max V; 0.43 -0.06 13.57 -0.00 11.34 -0.06 LG1 ". Min:V, -17.69 -0.05 -13, 0.00 -11.51 -0.08 LG2 Max Mr -17.20 -0.05 -13.55 0.0 -11.41 -0.08 LG4 MinMT _ 0.43 -0.06 13.57 -0. 11.34 -0.06 LG1 Max M 0.43 -0.O6 13,57 -0.00 11.34 -0.06 LG1 Min My -17.69 -0.06 -13.63 0.00 -11.51 -0.08 LG2 Max M, -0.73 -0.03 4.38 0.00 3.65 0.02 LG5 -17.20 -0.05 -13,55 0.00 -11.41 -0.08 LG4 9 COI 86 0.00 Max N 16.87.01 7.64 0.0 -11. 61 -0.04 LG2 Min N -27.5 -0.02 -3.47 -0.00 11.25 -0.10 LG3 Max V -6.86 0.04 0.82 0.00 3.65 0.02 LG5 Min`V 27:59 -0.0 -3.47 -0.00 11.25 -0.10 LG3 Max V; 16.87 -0.01 7.54 0.00 -11.51 -0.04 LG2 ;Min V, -27.59 -0.02 -3.47 -0.00 11.25 -0.10 LG3 Max MT 16.33 -0,01 6.98 0.0 -11.41 -0.04 LG4 Min Mr -27.21 -0.02 -2.95 -0.00 11.34 -0.10 LG1 Max M -27.21 -0.02 -2.95 -0.00 11,34 -0.10 LG1 Min My 16.87 -0.01 7.54 0.00 -11.51 -0.04 LG2 Max M, -6.86 0.04 0.82 0.00 3.65 0.02 LG5 = Min'M' =27:59 -0.02 -3.47 -0.00 11.25 -0.1 LG3 66 258.80 Max f3 22:55 0.02 2.13 -0.00 -3.65 0.12 LG4 V MIn -66.8 0.14 1.59 -0.00 13,80 0.31 LG1 Max V -32.21 0.31 2.53 -0.00 9.11 0.00 LG5 Min;Vy 22.55 0.0 2.13 -0.00 3.65 0.12 LG4 Max V, 18.64 0.06 2.7 -0.00 -2.28 0.11 LG2 Mk► V= -62.46 0.12 1.12 -0.00 12.38 0.31 LG3 Max Mr 18.64 0.06 2,79 -0.0 -2.28 0.11 LG2 Min MT 66.85 0.14 1.59 -O.OD 13.80 0.31 LG1 Max M -56.85 0.14 1.59 -0.00 13.8 0.31 LG1 Min My 22.55 0.02 2.13 -0.00 -3.6 0.12 LG4 Max M, -52.46 0.12 1.12 -0.00 12.38 0.31 LG3 :Ulft Kg- 32.21 0.31 2.53 -0.00 9.11 0.001 LG5 23.18 0.01 8.74 Minh -15.61 36:68 - -18.55 0.03 11.13 22.08 LG3 MaxVv 5.65 14.66 23.18 0.01 -13,90 8.74 LG4 Min -15.58 -40.31 -18.65 0.03 11.19 24.29 LG1 Max V, 15.65 14.66 23.18 0.01 -13.90 8.74 LG4 Min -15.58 ,40:31 -18. 0.03 11.19 -24.29 LG1 Max Mr 15.58 40.31 -18.65 0.0 11.19 24.29 LG1 MlnI M., 15.82 11.29 23.07 0.01 -13.84 6.70 LG2 Max My -15.58 -40.31 -18.65 0.03 11.1 -24.29 LG1 ® RFEM 4.10.2680-ArbW.V 3D Structures solved using FEM www.dlubal.com Josef Gartner GmbH Page: 30154 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S Protect 4C2„ Structure: BenchmarkGeste11-V3Dowel I Date: 08/02/2013 ■ MFMRFR.q - INTFRNAI I=OPr'l=lR I nart rnmhinatinnc Member No. CO Nod N rLatstion >x[j Shear Foiaes [kN] ` N Vy Vz Moments [kNmj MT My Mz Corresponding Load Cases 90 C01 Min M 15.65 14.66 23.18 0.01 -13. 8.74 LG4 Max Mt 15.65 14.66 23.18 0.01 -13.90 8.74 LG4 Min M, -15.58 -40.31 -18.65 0.03 11.19 -24.2 LG1 50 00 Max;N 15.71 14A8 23.16 0.00 0.00 0.00 LG4 Min N -15.38 36.90 -18.56 0.00 0.00 0.00 LG3 M6x;Vy 16.71 14.40 23.16 0.00 0.00 0.00 LG4 Min V -15.30 -40.61 -18.66 0.00 0.00 0.00 LG1 Max Vz 15.71 14.48 23.16 0.00 0.00 0.00 LG4 Min V, -15.30 -40.61 -18.66 0.00 0.00 0.00 LG1 MAX MT -16.30 -40.61 -18.66 0.0 0.00 0.00 LG1 Min MT -15.30 -40.61 -18.66 0.0 0.00 0.00 LG1 Max My -15.30 -40.$1 < 18.66 0.00 0. 0.00 LG1 Min My 15.30 40.61 18.66 0.00 0.0 0.00 LG1 ulaji';ti�iZ -_15.38 -36.80 -18.56 0.00 0.00 0. LG3 Min Mz -15.30 -40.61 -18.66 0.00 0.00 0.0 LG1 GRV55-5EGTIVN5 - INTERNAL FVRGES LOaa comolnations Member Not1 ocatkxi Shear Fpross [M) Moments [kNm] Corresponding Load Cases No. CO [40 `r x[an] ;;, N.; Vy , Vz MT My Mz Section No RIiO 200x100x6.3` 48 C01 48 0.00 Max N 16. -19.93 10.02 0.00 0.00 0.00 LG1 Min N -16.02 31.65 ' -8.02 0.00 0.00 0.00 LG2 Max -16.02 31.66 •8.02 0.00 0.00 0.00 LG2 Min,Vy 16.08 " -21.21 10.06 0.00 0.00 0.00 LG3 Max V, 16.08 -21.21 10.06 0.00 0.00 0.00 LG3 Min V. -16.02 31.65 -8.02 0.00 0.00 0.00 LG2 Max MT 16.09 -19.93 10.02 0.00 0.00 0.00 LG1 Min MT 16.09 -19.93 10.02 0.00 0.00 0.00 LG1 Max M 16.69 -19.93 10.02 0.00 O.OD 0.00 LGt Min>My 16.09 -19.93 1 10.02 0.00 0.00 0.00 LG1 Max M, 16.09 -19.93 10.02 0.00 0.00 0.00 LG1 Min M 16.09 -19.93 10.02 0.00 0.00 0.0 LG1 49 15.80 Max 16. -19.99 10.02 0.00 1.58 3.15 LG1 Min N 46.04, 31.59 -8.02 0.00 -1.27 -5.00 LG2 Max V -16.04 31.5 -8.02 0.00 -1.27 -5.00 LG2 Min Vy 16.08 -21.25 10.06 0.00 1.59 3.35 LG3 Max V, 16.08 -21.25 10.06 0.00 1.59 3.35 LG3 Min-W -16.04 31.59 "-8.02 0.00 -1.27 -5.00 LG2 Max MT -16.04 31.59 -8.02 0. -1.27 -5.00 LG2 1NInMT 5.38 -3.70 5.59 O.OD 0.89 0.58 LG5 Max, M 16.08 -21.25 10.06 0.00 1.59 3.35 LG3 .,Min. My -16.04 31.59 -8.02 0.00 -1.27 -5.00 LG2 Max M, 16.08 -21.25 10.06 0.00 1.59 3.35 LG3 Min-M -16.04 :31.59 -8.02 0.00 -1.27 5. LG2 50 C01 49 0.00 Max N' 4.97 -6.37 -7.99 0.00 -1.27 5.00 LG2 MWN -1.00, 9.31 10.08 0.00 1.59 3.35 LG3 Max V -0.55 9.79 10.05 0.00 1.58 3.15 LG1 ' inVy 4.34 -6.7 -7.96 0.00 -1.26 -4.75 LG4 Max V, 1.00 9.31 10.08 0.00 1.59 3.35 LG3 Min;V= 4.97 -6.37 -7.99 0.00 -1.27 ' -5.00 LG2 Max MT 4.97 -6.37 -7.99 0. -1.27 -5.00 LG2 "Min MT 0.95 4.03 5.53 O.OD 0.89 0.58 LG5 Max M .1.00 9.31 10.08 0.00 1.5 3.35 LG3 Min My 4.97 -6.37 -7.99 0.00 -1.27 5.00 LG2 Max M, -1.00 9.31 10.08 0.00 1.59 3.35 LG3 MInM' 4.87 -6.37 -7.99 0.00 -1.27 -5.00 LG2 41' 144.20 Max 4.94 -6.85 -8.01 -0.01 -12.80 4.53 LG2 Min N -1.07 8.95 10.08 -0.04 16.13 -9.82 LG3 Max V -0.64 9.31 10.04 -0.04 16.07 -10.61 LG1 MInVy, 4.32 -7.08 -7.98 -0.01 -12.75 6.19 LG4 Max V, -1.07 8.95 10.08 -0.04 16.13 -9.82 LG3 -: Min VZ 4.94 -6.85 - -8.01 -0.01 -12.80 4.53 LG2 Max MT 4.94 -6.85 -8.01 -0.01 -12.80 4.53 LG2 h MT -0.64 9.31 10.04 -0.04 18.07 -10.61 LG1 Max M -1.07 8.95 10.08 -0.04 16.13 -9.82 LG3 Mln'My' 4.94 8585 `-8.01 -0.01 -12.80 4.53 LG2 Max M, 4.32 -7.08 -7.98 -0.01 -12.75 5.19 LG4 "`Min%M -0.64 9.31 10.04 -0.04 16.07 -10.61 LG1 53 C01 47' 6.00 Max N 15.65, 14.66 -23.18 -0.01 13.90 8.74 LG4 Min N -15.61 -36.66 18.55 -0.03 -11.13 -22.08 LG3 Max V 15.65 14.66 -23.18 -0.01 13.90 8.74 LG4 Min V, -15.58 -40.31 18.65 -0.03 -11.19 -24.29 LG1 Max V, 15.58 40.31 18. -0.03 -11.19 -24.29 LGt Min:Vz 15.65 "-14.66 -23.18 -0.01 13.90 8.74 LG4 Max MT 5.16 -19.97 -1.19 0.0 0.75 -12.05 LG5 hVi -15.58 -40.31 18.65 -0. -11.19 -24.29 LG1 Max M 16.65 14.66 -23.18 -0.01 13.90, 8.74 LG4 Min`My ' >-15.58 -40.31 > 18.65 -0.03 -11.1 -24.29 LG1 Max M,, 15.65 14.66 -23.18 -0.01 13.90 8.74 LG4 Min<fAi , -15.58 -40.31 18.65 -0.03 -11.19 _ -24.2 LG1 53 66.60 Max NN 15.71 14.48 -23.16 0.00 0.00 0.00 LG4' Mlik N L15:38 -36.90 18.56 0.00 0.00 -0.00 LG3 Max V 15.71 14.48 -23.16 0.00 0.00 0.00 LG4 ® RFEM 4.10.2680 -Arbitrary 30 Structures solved using FEM www.diubal.com Josef Gartner GmbH Page: 31/54 Gartnerstralle 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S Project: AC2 - Structure: BenchmarkGesteil-Mowel I Date: 08/02/2013 0 CROSS -SECTIONS -INTERNAL FORCES Load combinations Member Notic ipmt{ot1 Shear-Foross {kN] ; Moments [kNm] Corresponding Load Cases No. CO Nor X{Cni N 1/y V= MT My M= - 53 C01 Min V -15.30 -40.61 18.66 0.00 0.00 -0.00 LG1 Msx.V., -15.30 40.61 18. 0.00 0.00 -0.00 LG1 Min V, 15.71 14.48 -23.16 0,00 0.00 0.00 LG4 Max -MT -15.30 -10.61 18.66 0.00 0.00 -0.00 LG1 Min MT -15.30 -40.61 18.66 0.00 0.00 -0.00 LG1 Maxi My -15.30 -40.61 18.66 0.00 0. -0.00 LG1 Min -15.30 -40.61 18.66 0.00 0.0 -0.00 LGt _M MaxiM' 15.67 11.06 -23.05 0.00 0.00 0. LG2 Min M, -15.30 40.61 18.66 0.00 0.00 -O.OD LG1 85 C01 83>: 0t00 Wax'N 16. -19.93 -10.02 0.00 0.00 0.00 LG1 Min N -16.02 31.65 8.02 0.00 0.00 0.00 LG2 Max�Vy -16.02 31,45 8.02 0.00 0.00 0.00 LG2 Min VV 16.08 -21.21 -10.06 0.00 0.00 0.00 LG3 Max V= -16.02 31..65 - 8.02 0.00 0.00 0.00 LG2 Min V, 16.08 -21.21 -10.06 0.00 0.00 0.00 LG3 Maz:MT 16.09 -19.93 -10.02 0.00 0.00 0.00 LG'I Min MT 16.09 -19.93 -10.02 0.00 0.00 0.00 LG1 Max.My 16.09 -19.93 -10.02 0.00 0.00 0.00 LG1 Min M 16.09 -19.93 -10.02 0.00 O.OD 0.00 LG1 MaxMz 16.09 -19.93 -10.02 0.00 0.00 0.0D LG1 Min M 16.09 -19.93 -10.02 0.00 0.00 O.OD LG1 84 15.80 "- Mazg 16._ -19.99 -10.02 -0.00 -1.58 3.15 LG1 Min N -16.04 31.59 8.02 -0.00 1.27 5.00 LG2 Max,Vy. -16.04 31.5 8.02 -0.00 1.27 5.00 LG2 Min Vv 16.08 -21.25 -10.06 -0.00 -1.59 3.35 LG3 Msk % -16.04 31.59 8.02 -0.00 1.27 -5.00 LG2 Min V, 16.08 -21.25 -10.0 -0.00 -1.59 3.35 LG3 Max:MT _ 5.44 -1`,89 -0.04 0. -0.00 0.29 LG5 Min MT -16.04 31.59 8.02 -O.OD 1.27 -5.00 LG2 Max:My -16.04 31.59 8.02 -0.00 1.27 5.00 LG2 Min M 16.08 -21.25 -10.06 -0.00 -1.59 3.35 LG3 Maic`MZ 16.08 „-21.25 -10.06 -0.00 -1.59 3.35 LG3 Min M, -16.04 31.59 8.02 -0.00 1.27 -5.00, LG2 87 C01 84 000 -Max N 4.97 -6.37 7.99 -0.00 1.27 5.00 LG2 Min N .1.00 9.31 -10.08 -0.00 -1.59 3.35 LG3 "V -0.65 9.7 -10.05 -0.00 -1.58 3.15 LGII Min, 4.34 -6.72 7.96 -0.00 1.26 -4.75 LG4 MAX V, 4.97 -6.37 7. -0.00 1.27 5.00 LG2 Min V. -1.00 9.31 -10.08 -0.00 -1.59 3.35 LG3 Max MT 1.74 4.53 -0.10 0. -0.00 0.29 LG5 Min MT 4.97 -6.37 7.99 -0. 1.27 -5.00 LG2 Maz My 4.97 - -6.37 7.99 -0.00 1.27 5.00 LG2 Min M. -1.00 9.31 -10.08 -0.00 -1.5 3.35 LG3 l4jk% -1.00 9.31 -' -10.08 -0.00 -1.59 3.35 LG3 Min M, 4.97 -6.37 7.99 -0.00 1.27 -5.OD LG2 50' , 1. C20 • M8X-N 4,9 -6.86 8.01 0.01 12.80 4.63 LG2 M16 N -1.07 8.95 -10.08 0.04 -16.13 -9.82 LG3 MaxVy -0.64 9.31 -10.04 OD4 -16.07 -10.61 LG1 Min V 4.32 -7.08 7.98 0.01 12.75 5.19 LG4 Max V, 4.94 -6.85 8.01 0.01 12.80 4.53 LG2 Min V, -1.07 8.95 -10.00 0.04 -16.13 -9.82 LG3 Max MT -0.64 9 31 -10.04 0.04, -16.07 -10.61 LG1 Min MT 1.46 4.06 -0.36 0. -0.34 -5.90 LG5 MaxMy 4.94 -6.85 8.01 0.01 12.80 4.53 LG2 Min. M -1.07 8.95 -10.08 0.04 -16.13 -9.82 LG3 Max M= 4.32 -7.08 7.98 0.01 12.76 5.19, LG4 Min M, -0.64 9.31 -10.04 0.04 -16.07 -10,61 LG1 90 C01 56, M00 , MwN 15.65 14.66 23.18 0.01 -13.90 8,74 LG4 ,. Min N -15.61 -36.66 -18.55 0.03 11.13 -22.08 LG3 Max Vy 15.65 14.60 23.18 0.01 -13.90 8.74 LG4 Min Vv -15.58 -40.31 -18.65 0.03 11.19 -24.29 LG1 Max V= 16.65 14.66 23.18 0.01 -13.90 8.74 LG4 Min V. -15,68 -40.31 -18.65 0.03 11.19 -24.29 LG1 Max MT -15.58 -40.31 '; -18.65 0.03 11.19 -24.29 LG1 Min MT 15.62 11.29 23.07 0.01 -13.84 6.70 LG2 Mawmy ' -15.68 -40.31 -18.65 0.03 11.1 24.29 LG1 Minh 16.65 14.66 23.18 0.01 -13.90 8.74 LG4 Max;Mz _ 15.65 -14.66 23.18 0.01 -13.90 8.74 LG4 Min M, -15.58 40.31 -18.65 0.03 11.19 -24.29, LG1 88: 80.00 Max N 15.71 14:48 23.16 0.00 0.00 0.00 LG4 Min N -15.38 36.90 -18.56 0.00 0.00 0.00 LG3 "V 15.71 - 14.48 23.16 0.00 0.00 0.00 LG4 Min V -15.30 -40.61 -18.66 0.00 0.00 0.00 LG1 Mail V= 15.71 14.48 23.16 0.00 0.00 0.00 LG4 Min V, -15.30 -40.61 -18.66 0.00 0.00 0.00 LG1 Mk W =1520 -40.61 _ -18.66 0.00 0.00 0.00 LG1 Min MT -15.30 40.61 -18.66 O.OD 0.00 0.00 LGi Max'My -15.30 -40 61 -18.66 0.00 0.0 0.00 LG1 Minh -15.30 -40.61 -18.66 0.00 0.00 0.00 LG1 MaxM= -15.38 -3690 -18.56 0.00 ` 0.00 O.OD LG3 -15.30 40.61 -18.66 0.00 0.00 0.00, LG1 Section No. 2: RRO 200x100x6.3 ' 1 C01 59 0:00 'Max N 16.31 0.10 12.59 -0.00 173 1 1 LG2 Min N 6.57 0.28 12.64 0.00 23.31 -0.11 LG3 Max 'Vy 7.171, 0. 2. 00 23.32 -0.11 LG1 MlnV 5.90 0 2S 158 -0 2274 -0.17 LG4 Max VZ 16.31 0.10 12.5_ .00 -22.73 -0.16 LG2 ® RFEM 4.10,2= - Arbitrary 31) Structures solved using FEM www.diubal.com Josef Gartner GmbH Page: 32154 Gartnerstralle 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S Project: AC2 _ Structure: BenchmarkGesbell-V3Dowel I Date: 08/02/2013 ■ CROSS -SECTIONS -INTERNAL FORCES Load combinations Member H e s'brlton Shear Forces [kNj Moments (IcNm] Corresponding Load Cases No. CO ;; 1c[gtlj LL.> , N '; 1/y' ' Vz MT My Mz 1 C01 Min V, 6.67 0.28 -12.64 0.00 23.31 -0.11 LG3 Max MT 6.57 0.28 -12.64 O.OD 23.31 -0.11 LG3 Min Mr 7.85 0.20 -3.76 -0.03 6.74 -0.02 LG5 Max my 7.17 0:34 , -12.58 0.00 23.3 -0.11 LG1 Min M, 15.90 0.05 12.58 -0.00 -22.74 -0.17 LG4 Max'Mz 7.85 0.20 -3.76 -0.03 6.74 -0.02 LG5 Min M, 16.90 0.05 12.58 -0.00 -22.74 -0.17 LG4 60` 20500 :: Max N 4.1 -0.05 -2.41 -0.03 -0.95 -0.01 LG5 Min N -9.11 -0.15 -8.06 -0.00 -2.35 -0.07 LG3 Max,V -4.10 -` -0.0 -2.41 -0.03 -0.95 -0.01 LG5 Min V, -7.66 -0.1 -8.05 -0.00 -2.35 -0.08 LG1 Mak Vz -3.22 -0.10 7.77 0.00 2.16 -0.05 LG4 Min V, -9.11 -0A5 -8.06 -0.00 -2.36 -0.07 LG3 Mex'Mi. -1.95 -0,11 7.76 0.00 2.16 -0.05 LG2 Min Mr 4.10 -0.05 -2.41 -0.0 -0.95 -0.01 LG5 Max My -1.95 -0.11 7.76 0.00 2.1 -0.05 LG2 Min M. -7.66 -0.16 -8.05 -0.00 -2.35 -0.08 LG1 Max'Mz 4AO -0.05 -2.41 -0.03 -0.95 -0.01 LG5 Min M, -7.66 -0.16 -8.05 -0.00 -2.35 -0.08 LG1 2 C01 81,.:" Ot00' -.Mez.N 16: -0.10 -12.59 0.00 -22.72 -0.16 LG2 Min N -6.11 -0.33 3.91 -0.03 7.84 0.05 LG5 Mix' 15.96 ' " -0. -12.59 0.00 -22.73 -0.17 LG4 Min V, 7.00 -0.34 12.59 -0.00 23.31 -0.11 LG1 Max Vz 6.41 r-0.27 12. -0.00 23.30 -0.12 LG3 Min, V, 16.38 -0.10 -12.59 0.00 -22.72 -0.16 LG2 Max MT 16.38 -0.10 - -12.59 0. -22.72 -0.16 LG2 Min Mr -6.11 -0.33 3.91 -0.03 7.84 0.05 LG5 Max My 7.00 -0.34 12.59 -0.00 23.31 -0.11 LGt Min M,' 15.96 -0.05 -12.59 0.00 -22.73 -0.17 LG4 Max Mz -6.11 -0.33 3.91 -0.03 7.84 0.05 LG5 Min M, 15.96 -0.05 -12.59 0.00 -22.73 -0.17 LG4 ' 56 2. 5 00 Max±N 15.5 -0.11 -13.74 0.00 -26.78 -0.13 LG4 Min N -16.43 -0,42 4.24 -0.03 9.13 -0.00 LG5 MoVy 15.52 -0.11 -13.74 0.00 -26.78 -0.13 LG4 Min V, -13.27 -0.44 13.59 -0.00 27.39 -0.26 LG1 Msx % =12.93 -0.35 - 13.66 -0.00 ' 27.39 -0.27 LG3 Min V, 15.52 -0.11 -13.74 0.00 -26.78 -0.13 LG4 :-- MAX MT . 15.52 -0.11 -13.74 0.0 -26.78 -0.13 LG4 Min Mr -16.43 -0.42 4.24 -0.03 9.13 -0.00 LG5 Maic:;My -13.27 -0.44 13.59 -0.00 27.3 -0.26 LG1 Mtn M, 16.52 -0.11 -13.74 0.00 -26.78 -0.13 LG4 Max;'Mz 1 -16.43 -0.42 ^ 4.24 -0.03 9.13 -0.00 LG5 Min M, -12.93 -0.35 13.66 -0.00 27.39 -0.27 LG3 3 C01 78': 040 Mail°N 16.81 = 0.04 11.97 0.02 -3.12 -0.13 LG1 Minty 6. 0.00 3.78 0.04 -0.98 -0.05 LG5 max 16.72 0.071 11.88 0.02 3.10 -0.12 LG3 Min V, 15.50 -0.02 -12.11 -0.02 3.14 -0.13 LG2 MAx V= 16.81 004 11.97 0.02 -3.12 -0.13 LG1 Min V, 15.59 -0.02 -12.11 -0.02 3.14 -0.13 LG2 ",MT 6.05 0.00 ' 3.78 0. -0.98 -0.05 LG5 Min. Mr 15.59 -0.02 -12.11 -0.02 3.14 -0.13 LG2 Mak ' 16.59 -0.02 -12.11 -0.02 3.14 -0.13 LG2 Min MY 16.81 0.04 11.97 0.02 3.12 -0.13 LG1 Max.M= 6.05 0.00 3.78 0.04 -0.98 -0. LG5 Min , 15.59 -0.02 -12.11 -0.02 3.14 -0.13 LG2 85 .. " : ' 25.00 WAR - -Z -0,06 3.90 0.04 0.00 0.03 LG5 Min N -7.61 -0.04 _ 12.33 0.02 0.02 0.10 LG1 MaxV -6.85 0.01 - 12.23 0.02 0.02 0.10 LG3 Min V. -6.71 -0.1 -12.44 -0.02 -0.01 0.09 LG2 -7.01 0.04 . - 12.33 0.02 0.02 0.10 LG1 MinV; -6.71 -0.10 -12.44 -0.02 -0.01 0.09 LG2 Max MT -2.53 -0.06 3.90 0.04 0.00 0.03 LG5 Min Mr -6.71 -0.10 -12.44 -0.02 -0.01 0.09 LG2 Max My -6.95 0.01 12.23 0.02 0.02 0.10 LG3 Min M, 6.64 -0.05 -12.35 -0.02 -0.01 0.09 LG4 Max;Mz 6.95 0;01 12.23 0.02 0.02 0.10 LG3 Min M, -2.63 -0.06 3.90 0.04 0.00 0.03 LG5 4 C01 70:' 000'' Max-N '-6. -0.02 C82 0.04 -9.83 -0.03 LG5 MIN -38.77 -0.14 -6.29 -0.01 32.07 -0.18 LG2 Vy -6.55 -0.02, 1.82 0.04 -9.83 -0.03 LG5 Min V, 38.77 -0.14 -6.29 -0.01 32.07 -0.18 LG2 Max Vz " 37.24 - -0.14 ' 6.22, 0.01 31.87 -0.17 LGt Min V, -38.77 -0.14 -6.2 -0.01 32.07 -0.18 LG2 MAX MT -6.55 -002 1.82 0.04 -9.83 -0.03 LG5 Min MT -38.77 -0.14 -6.29 -0.01 32.07 -0.18 LG2 Mai M; 38.77 60:14 -6.29 -0.01 32.07 -0.18 LG2 Min M, 37.24 -0.14 6.22 0.01 -31.87 -0.17 LG1 Max'Mi -6.55 -0.02 1.62 0.04 -9.83 -0.03 LG5 Min M, -38.77 -0.14 -6.29 -0.01 32.07 -0.18 LG2 78 :,305i00 MaicN 16.8 0.04 11.97 0.02 3.12 -0.13 LG1 Min N 6.05 0.00 3.78 0.04 -0.98 -0.05 LG5 Wax Vy , 16,72 0.07 -,11.88 0.02 3.10 -0.12 LG3 Min V, 15.59 -0.02 -12.11 -0.02 3.14 -0.13 LG2 Max Vz 16.82 0.04 11.97 0.02 -3.12 -0.13 LG1 Min V, 15.59 -0.02 12.11 -0.02 3.14 -0.13 LG2 Maic;Mr ' ?-� 0.00 3.78 0.04 -0.98 -0.05 LG5 Min Mr 15.59 0.02 -12.11 -0.02 3.14 -0.13 LG2 ® RFEM 4.10.2M - Arbitrary 31) Structures solved using FEM www.diubal.com Josef Gartner GmbH Page: 33/54 GartnerstraMe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S Project.,ACZ. Structure: BenchmarkGestell-Mowel I Date: 08/02/2013 ■ CROSS -SECTIONS -INTERNAL FORCES Load Combinations Member Node kaeatConx Shear Forces, IkNI Moments IWml Corresponding Load Cases No. CO �. Vz MT Mr Mz - -4 C01 Max M 15.59 -0.02 -12.11 -0.02 3.14 -0.13 LG2 Min, my " 16.82 0.04 11.97 0.02 3.12 -0.13 LG1 Max M, 6.05 0.00 3.78 0.04 -0.98 -0.05, LG5 in M 15.69 -0.02 -12.11 -0.02 3.14 -0,13 LG2 5 C01 68 0.00 Max N -11. 0.00 -0.01 0,04 -11.66 -0.04 LG5 Minty ',;. 57.78 0.00 0.03 0.00 38.33 -0.30 LG2 Max V -57.78 O.OD 0.03 0.00 38.33 -0.30 LG2 MinV, -11.09 0: -0.01 0.04 -11.66 -0.04 LG5 Max V, 57.78 0.00 0.03 0.00 38.33 -0.30 LG2 Min V= 56.32 - 0:00 -0. -0.00 -38.08 -0.28 LG1 Max MT -11.09 0.00 -0.01 0.04 -11.66 -0.04 LG5 Min Mr -56:32 0.00 -0,03 -0. 38.08 -0.28 LG1 Max M -57.78 0.00 0.03 0.00 38.3 -0.30 LG2 Min°My -56.32 ' 0.00 -0.03 -0.00 -38.08 -0.28 LG1 Max M, -11.09 0.00 401 0.04 -11.66 -0.04 LG5 MM M 57.78 '' 0.00 0.03 0.00 38.33 -0.30 LG2 70 210.00 Max N -6.5 -0.02 1.82 0.04 -9.83 -0.03 LG5 Min N ><-38.76 -0,14 - -6.33 -0.01 32.07 -0.18 LG2 Max Vv -6.55 -0.02 1.82 0.04 -9.83 -0.03 LG5 Mln`'V -38.76 ' -0.14 -6.33 -0.01 32.07 -0.18 LG2 Max V, -37.23 -0.14 6.26 0.01 -31.87 -0.17 LG1 Min VZ -38.76 -0.14 -6. -0.01 32.07 -0.18 LG2 Max MT -6.55 -0.02 1.82 0.04 -9.83 -0.03 LG5 MM;Mr r38.76 -0.14 ' -6.33 -0.01 32.07 -0.18 LG2 Max W 38.76 -0.14 -6.33 -0.01 32.07 -0.18 LG2 Min My -37,23 -0.14 6.26 0.01 -31.87 -0.17 LG1 Max M, -6.55 -0.02 1.82 0.04 -9.83 -0.03 LG5 ,MlnM -38.76 -0.14 -6.33 -0.01 32.07 -0.18 LG2 6 C01 63 0.00 Max 9 -7.20 0.02 -1.83 0.04 -9.82 -0.03 LG5 ' `Mlh N 48.70 0.14 6.33 0.01 32.07 -0.18 LG2 Max V W.76 0.14 6.33 0.01 32.07 -0.18 LG2 Min Vy -7.20 0.02 -1.83 . 0.04 -9.82 -0.03 LG5 Max,V, 38.76 0.14 6.33 0.01 32.07 -0.18 LG2 Min';V. -37.23 0.14 -6.26 -0.01 31.87 -0.17 LG7 Max MT -7.20 0.02 -1.83 0.04 -9.82 -0.03 LG5 Min.`Mr 37.23 0.14 6.26 -0.01 31.87 -0.17 LG1 Max M -38.76 0.14 6.33 0.01 32.07 -0.18 LG2 Min`My -37.23 0.14 -6.26 -0.01 -31.87 -0.17 LG1 Max M, -7.20 0.02 -1.83 0.04 -9.82 -0.03 LG5 MinM 38.76 0.14 6.33 0.01 _ 32.07 -0.18 LG2 68 210.06 Max -11.09 0.00 -0.01 0.04 -11.66 -0.04 LG5 Mln N -57.78 -0.00 -0.03 -0.00 38.33 -0.30 LG2 Max V -11.09 0. -0.01 0.04 -11.66 404 LG5 MinVy -57.78 -0. -0.03 -0.00 38.33 -0.30 LG2 Max V, 56.32 -0.00 0.03 0.00 38.08 -0.28 LG1 Mln V= 57.78 -0.00 -0.03 -0.00 38.33 -0.30 LG2 Max Mr -11.09 0.00 -0.01 0.04 -11.66 -0.04 LG5 _. 'Min'MT -57.78 -0.00 -0.03 -0.00 38.33 -0.30 LG2 Max My 57.78 -0.00 -0.03 -0.00 38.3 -0.30 LG2 Min My -56.32 -0.00 0.03 0.00 -38.0 -0.28 LG1 Max-M, -11.09 0.00 -0.01 0.04 -11.66 -0,04 LG5 Min M 57.78 -0.00 -0.03 -0.00 38.33 -0.30 LG2 7 C01 55' 6.06 Max 9 16.8 -0.04 -11.97 -0.02 -3.12 -0.13 LG1 Min N 5.93 0.02 3.78 0.04 -0.98 -0.05 LG5 Max V 15.59 0.02 12.11 0.02 3.14 -0.13 LG2 Mm Vy _ 16.72 -0:07 -t ,88 -0.02 3.10 -0.12 LG3 Max V, 15.59 0.02 12.11 0.02 3,14 -0.13 LG2 _MinV7 16.82 -0.04 -11.97 -0,02 -3.12 -0.13 LG1 Max Mr 5.93 0.02 -3.78 0.04 -0.98 -0.05 LG5 Min'Mr 16.82 - -004 -11.97 -0.02 3.12 -0.13 LG1 Max M, 16.69 0.02 12.11 0.02 3.14 -0.13 LG2 MirtMy 16.82 -0.04 -11.97 -0.02 -3.12 -0.13 LG1 Max M, 5.93 0.02 -3.78 0.04 -0.98 -0,05 LG5 Min'M 15.59 0.02 12.11 0.02 3.14 -0.1 LG2 63 305.00 Max R -7.21 0.02 -1.83 0.04 -9.82 -0.03 LG5 Min N =38.7 , 0.14 6.30 0.01 32.07 -0.18 LG2 Max V 38.78 0.14 6.30 0.01 32.07 -0.18 LG2 Min Vy 7.21 0.02 -1.83 0.04 -9.82 -0.03 LG5 Max V, 38.78 0.14 6.30 0.01 32.07 -0.18 LG2 ,Min'Vz -37.26 0.14 -6.23 -0.01 31.87 -0.17 LG1 Max MT -7.21 0.02 -1.83 0.04 -9.82 -0.03 LG5 Miri Mr -37.26 0:14 -6.23 -0.01 31.87 -0.17 LG7 Max M 38.78 0.14 6.30 0.01 32.07 -0.18 LG2 Mtn My 47.26 0.14 3:23 -0.01 31.87 -0.17 LG1 Max M, -7.21 0.02 -1.83 0.04 -9.82 -0.03 LG5 M ;M -38.78 0.14 6.30 0.01 32.07 -0.18 LG2 58 C01 47 0.00 Max N' 15.52 0.11 13.74 -0.00 -26.78 -0.13 LG4 Min N -13.27 ' 0.44 -13.69 0.00 27.39 -0.26 LG1 Max V -13.27 0.44 -13.59 0.00 27.39 -0.26 LG1 Min Vy 16.52 0,11 13:74 -0.00 -26.78 -0.13 LG4 Max V, 15.52 0.11 13.74 -0.00 -26.78 -0.13 LG4 Min V= -12.93 0.35 -13.66 0.00 27.39 -0.27 LG3 Max Mr -12.93 0.35 -13.66 0.00 27.39 -0.27 LG3 MIn Mr 5.93 029 -4.11 -0.03 7.96 0.01 LG5 Max M 43.21 0.44 -13.59 0.00 27.3 -0.26 LG1 Mln`My 15.52 - 0.11 13.74 -0.00 -26.7 -0.13 LG4 Max M= i 0.29 -4.11 -0.03 7.961 0.01 LG5 ® RFEM 4.10.2680 -Arbitrary 30 Structures solved using FEM www.diubal.com O Oo8MidNCN7 �ynJ ��NJHUO NN V NWW au)Z—j LU LUNco '9 W0Lc_LZ o a Wii ;yUgcJULLV=ogZptW xo% rg? MJnnSoCmMSoMNNpNJNpOmNCOr0CmC$mVCp .JMMOO'mNn0�mn� rJMSw'Cr0ShnV .(qJnpCOrn��0C�OLLQV�pp'f>NJSNc0��CVCp .MJSmNr0��7MJumNro0�,((11�cnMoaDffJ,Oo��}c'I�MSrn'NroOpg((ttJOOrnOCrctO��pjV�f 1(1(JnmMOmccC��,7��� JVSrno'NrnOJrOMrrNg$: gJMS.OIg�1h�h}{ (�11JMOcereqmN.�f�`V�'��-J�OOmMOq6v�/((qqJtSnnmqam'riJJ,JMtSa�s��Mg�o�• NJlm g<rqW ..J'�ONrqmNcS'-1NJOSnnCqrV, G-' rJt�OOMOnqnc' JNraMO<rcqCCN: -Vpp �rJtSMOhq�[cilJcMOeet.oNS(rO�7��, JMNNOSouQuqODiiiN0S�R'cetp°Iiii'JuTuOvq�C�nn)ifN0m NuoVrfi;O0�q0m�t1)m0nNuMo.-�t.Jr1C�omf?�lNJOvnNoMi iJrNOrnCsqut7�lJrMet�ompDt JrNOm�lqCqfil(1(�OppOQO'SO ff����IIJOGMMrO-JNg..VCro}}M�OOMNC�q5.INJlgN�oA0rJON�O5 1JM0cOoy0jrJ0�0oMr((((J00MN�qtJ��J(� (qq(JqCofrc��Vfl(l(JCMCqt�'/���V�tJMOppMovgcrJMeh�rqrSCN�Ef igccdMnOO' 'NJMrC�rorn' N�MMedNEo N�MrMCrop.VI� rJMfm�.q�-1O4mtoCjry JMolN�^h�NMMNOrNcpi� JrMfNOnrgjt(tCJgaaCmCarl!�����7�MNN0MrNrm 1(JrMM0s�SO1j�� MI OS�Cci)TSmCon J�SoCvqSfj OScCo:• qo->JMTSriqrnN�f>N2 6mComffjJOrtO��om?c 0NOSmCor�.0rI0OSo�qsNpc��21r0tCCOaom;p?���.(rI0000ONCqNn[3ci91NO'0CC�SSON[nr�'�i�i'MMrqmS0vNrNV�SgqtCf}1, JNOrrNM0o� 11JNOrr'M0vrcmff���jR 0JqqNrNy�ppgmIMA�c Jdrp(oONO:rtMOCc�namiNr��S0gCtc" p+�rmOmS0q�C�.O�p11NOrrMOr.cm"ff��'��_qJ��<.WOcSec-OOpr 11JO�I0NMOmo.'SS��C-. J NmNrrONvco,nOO rO Ob LD IN Inldm O gOOgqq00 99999999999g9gq9999999999999999999494oa0000000000ggg944R4449999 9999999944449R4444C?RMNO4 ECO1 MN OMn;�C')M, Nqqqq pN RO�Ox ONn O87 NNNNNc4ploj NcN C.. 09cogogocoo¢ogogooqqcoc¢occggg9o9599o99oqoqsaOo.ogoogqo090999999909090999990909090999090909 iiinn?NVV.CC0O... ...00r6gN NOQC00000- n11,9MS980�0sOOm W ppOOSOppOSSS89$!3800Or000N N 99NN p OSOSOSSSOSSSSOOSSOOppSSNMONOOO cociqCO OmNNNNra0q�2 m m nh0 r.-0Mn c009 M WO M wi CV t� O m OrAO0 'r-ONo NOON On C'j NNNZ c�ccc c� c'mz O NN S C. i. 2:1Ci U U Uco U U U Z o t7 cD g e 8 W v �d e 8 W v �d co Z W 0 Z U- LU E°A Z N vN� r La F- c I O w � Ll c � 8, O � , J S �- -ic-J-JSc-JcJ-J-ioj jo-j 01c c�c c���c�-1 -j �c�-i O-j-i-ic-jci� 09-19�0i-ic-1-1c1-1-jci-J i(D �0 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J SOON N bmtg0ln�a-�M� tq itl��aaO�ee��tt�� rm.-rimpp Ni�pp mm ���mm�A�ntnn�000 000 000pp Op000p ppOpp a 0 0 S S 0 0 0 S S O 0 0 O O O O S O O O O O O Q O S O N444RR9gR4R4gq5'g4ggqqgqgggqqqqqgqgqgqqqggqqgqqqqoqqgqqoqgog oocoocoococ000000cc0000c0000 � p p pp p p p p p p p p p pp p p p p p pp E pG pC �/y�}aa pp ppv p Y MMMM{� M(�t� MMpp �/f0t� mNO m oNM�tnIN+), NlnnaDMno�D,n OS OOS OOS SSSSSSSSOOS OOOOaO �V�V��.7 GD a000 a0��Y�Va0�v0��OD�1�1�VI"QnV Vrv,rMSMMM.-(h C'1�MMMr 2.... �O>0101�NOf O>N01N �O�Oi�010iNO�OfNW�t(r�a-tbm�.-tn lf?.�tnq NfV q(VNNq.N (VqN Nn NNNNNn NNrN OCOOCCOG OOO OOOOOGOO C.o 000C OOC 9� �$8$8,0o$o$oS$$88.oSSo800$88$_o$BoSo$S�880.Sg��SooS8$o,S$o$ oSSSB$o,S8�S$5888$000SBSS$88 ogogogqoqoqooqoqoggoqoqoogoqoggogccqocqocqocqqoqooqoqgooqqoqo 00000000000d00000000000c000c oao�mppppmm8p28p29p4CO U'C"i mrncc��pp'Me�VMaanMMyy��yy ��pp� a mmvu�wom�pe� rn� �m ou�r� mmmbmms� o� n NmNNmN mN�Ntnm:NNG01A.mb�YN NV'MNQaO V'.c�00MO�Oc+fr0000�006. . .tON4'1 S . 0.00000 O. 000000� .- W1ClIC)lfr �()b�tl lfr�lf?�[i�1n ln�tnNl�nfV f�fl�I�lV.�PfV rfV OD dGNOD 1� ODNf�CO.N OCNMfV NtVNNIh NtV f+IN COCGOOOOCOOog O.:ggqgqqgqgq000o 'O.Sp pppp pppppppppp pp ppp pp p pp�� pp�� pp�� pp�� , ccr�� , , , MM yy,���ff pppppp pppppppppppp pp{{ppppppppp 000:0000000000 SO.00SS'00 ,00 �00:0�000 �'�0���0.-�O��co'O l�+), O:cM9,0 00,0 ,00:00.000000.0...0000.000 �.5$.. . ogogodgcoocooqoqooq00000000000a0000000000000004q444�?ogggqq oq'ogg00000000000ddc;d oogooq L W 67 bV; OD �F� ��.-be-CO �gVWQ�a—�Y1� 6� @ Mi- M.-N(OMO {9m/7001 �pMM O,�S001 C O�WO� ��0 (� C1Mchih (qM MOMM �. 1DO haOm Ci iO m0C < C? N. _OfN (OCrN On GMC �YSO InCOft� OOi �o.� 1� Cf� f0 NI�tOmtO ram. b N CO CB asp �}e��}�f1 01 �Va �} to 01fK (� Z; NNN NNR�NgN NNNNN NR.-N4N iy � � � . LOL cc cc!c !c!c c! cc!yc C `` cCC cc Cc cC C!c Q >»>NxZc »»NZ>»>NcC icCZc`` >'CC cc Cc cc �>. I— 4c 'x S S:, S S ac4i Z o o Na � � 0 W a) O> In o v� CO Z ti co v ■ 2 S N of U a 0 a W U. c n i of Josef Gartner GmbH Page: 36/54 Gartnerstraf3e 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S Project:!- 2 Structure: BenchmarkG99tW1-V3Dowe1 I Date: 08/02/2013 ■ CROSS -SECTIONS -INTERNAL FORCES Load combinations Member Notl Location $hear Forces [kNj: MomerKs [kNmj Corresponding Load Cases No. CO lea`[a `. H ��`; rN' Vy Vz MT My M. 86 C01 Max,V, 7.42 -0.06 0.11 0.00 0.00 0.00 LG5 Min VZ 35.01 -0.00 0.04 0.00 0.00 0.00 LG3 Max Mr 34.11 -0.00 0.05 0.00 0.00 0.00 LG1 MT 34.11 -0.00 0.05 O.OD 0.00 0.00 LG1 ..'Min, Max M 34.11 -0.00 0.05 0.00 0.00, 0.00 LG1 Min MY i34.11 -0.00 0.05 0.00 0.00 0.00 LG1 Max M, 34.11 -0.00 0.05 0.00 0.00 0.0 LG1 Min -M. 34.11 -000 0.05 0.00 0.00 O.OD LG1 86 296.26 Max R 35.17 -0.00 -0.04 0.00 0.00 0.00 LG3 MinN 43.17 ' ` -0i00 -0.10 0.00 0.00 0.00 LG2 Mex V 7.57 0.0 -0.11 0.00 0.00 0.00 LG5 Min'Vy -43.17 -0. -0.10 0.00 0.00 0.00 LG2 Max V, 35.17 -0.00 -0.04 0.00 0.00 0.00 LG3 Mk3 Vz . 7.57 0,06 -0.11 0.00 0.00 0.00 LG5 Max Mr 34.33 -0.00 -0.05 0.00 0.00 0.00 LGt MInm 34.33 -0.00 -0.05 0. 0.00 0.00 LG1 Max MT 34.33 -0.00 -0.05 0.00 0: 0.00 LG1 Min My 34.33 -0100 -0.05 0.00 0. 0.00 LGt Max M, 34.33 -0.00 -0.05 0.00 0.00 0.0 LG1 34.33 -0.00 -0.05 0.00 0.00 0.0 LG1 Section N6V. 04200x100x6.3 51 C01 50 0.00 Max N 0.1 -0.04 -12.26 -0.00 -0.00 0.04 LG4 MinN A. -0.02 12.24 0.00 0.01 0.03 LG1 Max V -0.69 -0.01 12.14 0.00 0.01 0.03 LG3 Min Vy -0.47 -0.05 3.87 -0.00 0.05 0.01 LG5 Max V, -0.79 -0.02 12.24 0.00 0.01 0.03 LG1 Min Vz 0.16 :: ` -0.04 -12.3 -0.00 -0.00 0.04 LG2 Max MT -0.79 -0.02 12.24 0.0 0.01 0.03 LG1 MInMT _, 0.15 -004 -12.36 -0. -0.00 0.04 LG2 Max M -0.47 405 3.87 -0.00 0.05 0.01 LG5 Min My 0.15 : -0.04 -12.26 -0.00 -0: 0.04 LG4 Max M, 0.15 -0.04 -12.36 -0.00 -0.00 0.04 LG2 Min -M -0.47 -0.05 3.87 -0.00 0.05 0.01 LG5 51 91.20 Max N' 0,72 0.07 13.48 0.00 11.25 0.06 LG3 -MinN '-17.69 0.05 -13.63 -0.00 -11.51 0.08 LG2 Max, V 0.72 0.07 13.48 0.00 11.25 0.06 LG3 MlrrYy -0.85 -0.02 4.37 0.00 3.72 0.02 LG5 Max, V, 0.43 0.06 13.57 0.00 11.34 0.06 LG1 Min:Vz -17.0 0.05 -13: -0.00 -11.51 0.08 LG2 Max Mr 0.43 0.06 13.57 0. 11.34 0.06 LG1 Min:M7 -1720 - 0.05 -13.55 -0. -11.41 0.08 LG4 MaxM 0.43 0.06 13.57 0.00 11.34 0.06 LG1 'M_ -17.69 0.05 -13.63 -0.00 -11.51 0.08 LG2 MaxM, -17.20 0.05 -13.65 -0.00 -11.41 0.08 LG4 _ . Mlhv -0.86 : -0.02 4.37 0.00 3.72 0.02 LG5 52 C01 51 0.00 Max N 16.87 0.01 7.54 -0.00 -11.51 0.04 LG2 MIn N --27.59 0.02 -3.47 0.00 11.25 0.10 LG3 ,Max V� .8.17 0.04 0.08 0.00 3.72 0.03 LG5 Min Vy 16.33 0.01 6.98 -0.00 -11.41 0.04 LG4 Max V, 16.87 0.01 7.54 -0.00 -11.51 0.04 LG2 In Vz -27.59 0.02 3.47 0.00 11.25 0.10 LG3 Max,MT -27.21 0.02 -2.95 0.00 11.34 0.10 LG1 r MMAT 116.33 0.01 6.98 -0.0 -11A1 0.04 LG4 Max M -27.21 0.02 -2.95 0.00 11.34 0.10 LG1 Mln,My 16.87 0.01 7.54 -0.00 -11.51 0.04 LG2 Max M, .27.59 0.02 -3.47 0.00 11.26 0.1 LG3 Minty} -8.17 0.04 0.08 0.00 3.72 0.0 LG5 47 258.80 Max N' 22. -0.02 2.13 0.00 -3.65 -0.12 LG4 MinN : -56.85 -0.14 1.59 0.00 13.80 -0.31 LG1 Max V -25.41 0.04 1.80 0.00 7.23 -0.03 LG5 _V, Min . -56,85 -0.1 1.59 0.00 13.80 -0.31 LG1 Max. V, 18.64 -0.06 2.7 0.00 -2.28 -0.11 LG2 M Vz -02A6 _ -0..12 1.1 0!00 12.38 -0.31 LG3 Max Mr -56.85 -0.14 1.59 0.00 13.80 -0.31 LG1 Min MT ' " +:18.64 -0.06 2.79 0, -2.28 -0.11 LG2 Max M 56.85 -0.14 1.59 0.00 13.8 -0.31 LG1 ,Min My " 22.55 -0.02 2.13 0.00 3.6 -0.12 LG4 Max M, -25.41 0.04 1.80 0.00 7.23 -O.Oa LG5 Mln M 52.46 -012 1.12 0.00 12.38 -0.37 LG3 88 C01 85 0.00 Max (3 0.15 0.04 -12.26 0.00 -0.00 -0.04 LG4 Min N w(X79 0.02 12.24 -0.00 0.01 -0.03 LG1 Max V„ 0.15 0. -12.26 0.00 -0.00 -0.04 LG4 Min Vy > 0.54 -0.11 3.88 -0.00 -0.04 -0.00 LG5 Max V, -0.79 0.02 12.24 -0.00 0.01 -0.03 LG1 MM:VZ 0.15 0.04 -12,3 0.00 -0.00 -0.04 LG2 Max Mr 0.15 0.04 -12.36 0. -0.00 -0.04 LG2 Min.MT -0.79 0.02 12.24 -0.0D 0.01 -0.03 LG1 Max, M -0.69 0.01 12.14 -0.00 0.01 -0.03 LG3 1 Min:My ' '.-0.54 -0.11 3.88 -0.00 -0.04 -0.00 LG5 Max M, -0.54 -0.11 3.88 -0.00 -0.04 -0.00 LG5 Mm,M, 0.15 004 -12.36 0.00 -0.00 -0.04 LG2 86 91.20 Max N 0.7 -0.07 13.48 -0.00 11.25 -0.06 LG3 Min N -17. -0:05 -13.63 0.00 11.51 -0.08 LG2 Max.V� -0.73 -0.03 4.38 0.00 3.65 0.02 LG5 Min'Vy 0.72 0.07 13.48 -0.00 11.25 -0.06 LG3 Max V, 0.43 -0.06 13.57 -0.00 11.34 -0.06 LG1 Min`V= A7.69 -0.05 -13.63 0.00 -11.51 -0:08 LG2 ® RFEM 4.10.2680 - Arbitrary 30 Structures solved using FEM www.diubal.com Josef Gartner GmbH Page: 37/54 Gartnerstrafle 20, 89423 GUNDELFINGEN Sheet: i Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S Project:,, - Structure: BenchmarWeste[I-V3Dowe[ I Date: 08/02/2013 /'Dr%oo Qel-Tifwa WYCDdiA1 rnoree i ...yea nnmF.in.�4inn� _..--- Member No. CO; - NoY t ....?GIuCi�'... Ltrcatwn ._- . •- - Shear Forces [kN) , N; . `Vy. Vz Moments (kNm) Mr My Mz ---- --------------- Corresponding Load Cases 88 C01 Max Mr -17.20 -0.05 -13.55 0. -11.41 -0.08 LG4 Min MT 0.43 0.06 13.57 -O.OD 11.34 0*06 LG1 Max Mv 0.43 -0.06 13.57 -0.00 11.34 -0.06 LG1 Min My =17.69 405 -13.63 0.00 -11.51 -0-08 LG2 Max M, -0.73 -0.03 4.38 0.00 3.65 0.02 LG5 -17.20 -0.05 -13.55 0.00 -11.41 -0.08 LG4 89 C01 86 0.06 Max N 16.87 -0.01 7.54 0.00 -11.51 -0.04 1-132 Min N =27.5 -0.02 3.47 -0.00 11.25 -0.10 LG3 Max V -6.86 0.04 0.82 0.00 3.65 0.02 LG5 Min.Vy - -27.59 -0.0 3.47 -0.00 11.25 -0.10 LG3 Max V, 16.87 -0.01 7.54 0.00 -11.51 -0.04 LG2 MinVz . " .27.59 -0.02 -3.47 -0.00 11.25 -0.10 LG3 Max Mr 16.33 -0.01 6.98 0.0 -11.41 -0.04 LG4 Min:MT -27.21 -0.02 -2.95 40D 11.34 -0.10 LGt Max M -27.21 -0.02 -2.95 -0.00 11.3 -0.10 LG1 MinrMy =16.87 -0-01 7.54 0.00 -11.51 -0.04 LG2 Max M, -6.86 0.04 0.82 0.00 3.65 0.02 LG5 Minh "" -27.59 -0.02 3.47 -0.00 11.25 -0.10 LG3 56 258.86 Max R 22.55 0.02 2.13 -0.00 -3.65 0.12 LG4 Min N -66.85 014 1.59 -0.00 13.80 0.31 LG7 Max V -32.21 0.31 2.53 -0.00 9.11 0.00 LG5 Min Vy 22.55 0.02 2.13 -0.00 -3.65 0.12 LG4 Max V, 18.64 0.06 2.7 -0.00 -2.28 0.11 LG2 Min Vz -52.46 0.12 1.1 -0.00 12.3i 0.31 LG3 Max Mr 18.64 0.06 2.79 -0.0 -2.28 0.11 LG2 Min: Mr -56.85 0.14 1:51 -0. 13.80 0.31 LG1 Max. M, -56.85 0.14 1.59 -0.00 13.8 0.31 LG1 Min My >22.55 0:02 2.13 -0.00 -3. 0.12 LG4 Max -52.46 0.12 1.12 -0.00 12.38 0,31 LG3 ,M, 32.21 0:31 2.53 -0.00 9.11 0.004 LG5 Section Noa:S. QRO 100x4. 60 C01 60 0.00 Max N 5.36 -0.10 -1.19 -0.00 0.02 -0.01 LG5 Min N -10.1 -0.04 3.87 -0.00 -0.11 -0.02 LG4 Max V� -10.15 -0.04 3.87 -0.00 -0.11 -0.02 LG4 Min Vy ' 5.36 -0.1 -1.19 -0.00 0.02 -0.01 LG5 Max V, -10.15 -0.04 3.87 -0.00 0.11 -0.02 LG4 Min Vz 3.74 -0.07 -3.91 0'00 0.11 -0.03 1-133 Max Mr 4.46 -0.08 -3.91 0.00 0.11 -0.04 LG1 Min Mr . 5.36 -0.10 -1.19 -0.00 0.02 -0.01 LG5 Max M 3.74 -0.07 -3.91 0.00 0.11 -0.03 LG3 Min My -10.15 '- -0.04 3.87 -0.00 -0.11 -0.02 LG4 Max M, 5.36 -0.10 -1.19 -0.00 0.02 -0.01 LG5 Min'M { 4.45 -0.08 -3.91 0.00 0.11 -0.04 LG7 61 20.00 Max N' 6.1 -0.08 -3.76 0.00 -0.31 -0.02 LG1 Min N >,43.75 ` -0:04 3.76 -0.00 0.30 -0.02 LG4 Max V -13.75 0.04 3.76 -0.00 0.30 -0.02 LG4 Mlh:Vy &08 -0.11 -1.15 -0.00 -0.10 0.00 LG5 Max,., -13.75 -0.04 3.76 -0.00 0.30 -0.02 LG4 Min Vz 5.46 -0.08 -3.77 0.00 -0.31 -0.02 LG3 Max Mr 6.16 -0-08 -3.76 0. -0.31 -0.02 LG1 Min Mr 6.08 -0.11 -1 15 -0. -0.10 0.00 LG5 Max M -13.75 -0.04 3.76 -0.00 0.3 -0.02 LG4 Min M'y 5.46 -0.08 -3.77 0.00 -0.31 4.02 LG3 Max M, 6.08 -0.11 -1.15 -0.00 -0.10 0.0 LG5 l- M r <:6.16 -0.08 -3.76 0.00 -0.31 -0.02 LG1 61 C01 60 0.00 Max 6.68 -0.05 3.77 -0.00 -0.11 -0.03 LG2 Min N -13.74 -0.06 -4.03 0.00 0.11 -0.03 LG3 Max V -1.42 0,07 A A 9 -0.00 0.02 -0.00 1-135 Min`Vy -13.03 -0.07 -4.02 0.00 0.11 -0.04 LG1 Max V, 6.05 -0.05 3.77 -0.00 -0.11 -0.02 LG4 Min:Vz -13.74 -0.06 -4.03 0.00 0.11 -0.03 LG3 Max Mr -13.03 -0.07 -4.02 0. 0.11 -0.04 LG1 Min'Mr -1.42 0.07 -1.19 -0. 0.02 -0.00 LG5 Max M -13.74 -0,06 -4.03 0.00 0.11 -0.03 LG3 Min My 6.05 " -0.05 3.77 -0.00 -0.11 -0.02 LG4 Max M, -1.42 0.07 -1.19 -0.00 0.02 -0.00 LG5 Min`M -13.03 -0.07 -4.02 0.00 0.11 -0.04 LG1 20.60 Max 9 8. -0.05 3.63 -0.00 0.29 -0.02 LG2 Min N -17.52 -0.07 -3.92 0.00 -0.31 -0.02 1-433 Max V -2.40 0.06 -1.15 -0.00 -0.10 -0.01 LG5 Min Vy -16.83 -0.07 -3.91 ' 0.00 -0.31 -0.02 LG1 Max V, 7.77 -0.05 3.6 -0.00 0.29 -0.02 LG4 Min'Vz -17.52 0.07 ' -3.92 0.00 -0.31 -0.02 LG3 Max Mr -16.83 -0.07 -3.91 0. -0.31 -0.02 LG1 - Min Mr -2.40 0.06 -1.15 -0.0 -0.10 -0.01 LG5 Max 7.77 -0.05 3.63 -0.00 0.2 -0.02 LG4 _M My AZ52 0.07 -3.92 0.00 -0.31 -0.02 LG3 MaxM, -2.40 0.06 -1.15 -0.00 -0.10 -0.01 LG5 Min M' :Ae.83 -0.07 -3.91 0.00 -0.31 -0A2 LG1 62 40.00 Max fJ 11. -0.04 3.35 -0.00 0.33 -0.02 LG2 Min N =24. = -0:05 3.69 0.00 -0.36 -0.02 LG3 Max V -4.19 0.07 -1.07 -0.00 -0.11 -0.01 LG5 -0. -3.6 0.00 -0.35 -0.02 LG1MaVy 1094 -0.03 3.63 -0 0,33 -0.01 LG4 --24.70 -0.05 -3. 0. -0.35 -0.02 LG3 MMMaIniixnn -24.01 -0.05 -3. 0 -0.35 -0.02 LG1 -MMVrrz 419 0.07 -1. -0. -0.11 -0.01 LG5 ® RFEM 4.10.26M -Arbitrary 3D Structures solved using FEM www.diubal.com 3 �. 0 cn 0 cn m JJ n Z O. �pO Z p0ppOp' pOp^:-p0p pOp�. . m 333CMO) 33z iffm3mc�'� ii Z :mC35'mS�C3��k�33m�m5-�C3�m3g�3m a�CS�C �X �x SAC x 3�C3x D 3�3 "GG<GZ �T.'35ccc"GGGGZ��E33 �"GG<��ZZ" v'S�3��N<GGZyF�3FM3"G<G<Zy3'��C�3�3««:27r.���33$<G<GZ ACC r O VJOOA�cO.AOA OppIWV��ppW�CCffVWVNVOoWVWOr1 JNJN VJ<�OA+O�OOA+O00.D;AO+tO(0J�OVODOVN�ODOW�OD1 VODJ:O/J0A+OAN-4:VN VjI CC WO '.0 ��Lpp7 Jqq.AWNAOo+WOp1� ppIW >;V V m .(".UOAWOWOOWV G ;I ` �: 66E6 obbpbpb66666opbo _bybppbpbpbpoob0bpbpphppbbb_O666666bbbbbb_l666666666600600pob000b0000600.bpopoob000pbb_bpp6666pboh.bbo OWNOAW �'+WfT A:V-�U1V•-+f071.t071V+OVNVOOffOJ�O COn �07161+001[O11.C100DNOf OD N:N�.0 O11N���OfWVW-W�VO.W61.'�OT W.00I:OIW•+OW Of�fOO.NWfOOOi:W N�ONN01U1 �C71 f0i� -�. . . . . . L).WWW+CpJ�W+WLIW+L.IW WA-•AiJ+WL?A+WAWW+pLIJW+. . . . f0 fW71(OO..ffl CWn (W7�OtO fW1�{00 (W71�NW N.O WONW WNWN-W+.W V�Vr War WvNW WNW(Olt NW NOOINVfO GAO AtDAA A W -4 -4-40 -4 VOADAVAS VNNOfNNNO�NT�NOD-4 (A bobboobbobobbobboobbobobbboboobbobobbobboo666obbbboboobbbobohobboobbbboobboboobbbboobo6' ca o6(.7oo6b(o�o_obobopoboo66000Nbobbpbbobpoobbobopoo600po66000popbOo(bib6o6004ol(b�66ot(b�(b�766o766b7(o600(o6000bopooppobobbobbbo `` " 041WOWWUWi0 WfW7�W�tON�(OO tNOS-W+<O tO+tNO �fif�-++(n- ��(OJi�+�AWOAW(OJINAWAC/f A.POP A0AA A0AAJ+.A�AA�AA A+AAA A00A0AANS(071 f07'i AfWJ1 -�WW C o6600p66600Ob6bbobbobbboo66666pbb6bbbbbbb6ppbbbbbbbbpbbbbbbbbbbbbbbbbbobboobbboo666666bbbbbbbbbbbbb" O N O N N O N N N O N N O NN N S N N N.P W N O+ WN W N W W W N N 01. N N O W N W O N N N N N 0 N N N N N N O N N N O N N N N N W N N.� rrG�rrG�rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr-rrrrrrrrrrrrrrrrrrrrr cA&192 T 2 G) 2 GO G" G GMT WORU�'�k2G�G� ,n������A������'n�'n��i G�4��G�� conoft o"Rg �R9,MURA��i��n����L��G� (T N fT WN+fli W N W N+NW (f1N W01 WN+ W N (71+ (TWAtTN fJf AN+ AA++N W NWA n 0 ff 0) ma r n 3 ma o m O 0 3 �c O �Qj fC1 J !Y COD O C T wCD CD sl cC;) Z a G) Z T S N m N o C r c co W W cn + t Josef Gartner GmbH Page: 39/54 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax' 09073/84-2100 R E S U L T S Project WC,2 Structure: BenchmarkG99WII-V3DOW91 I Date: 08/02/2013 ■ (:KU55-5t(:l IUNU - IN I EKNAL F-UKULb LOaa COn'1Dinations Member Nr1eorloTt , :Shear Forces (kNl ' Moments ]kNm] Corresponding Load Cases No. CO d (coif _ N"' ., Vy_ Vz MT My Mz 77 COi yl�n M 24.01 -0.05 3.68 -0.00 0.35 -0.02 LG1 78 C01 78 0.00 Ma X 6.1 0.08 3.76 -0.00 -0.31- -0.02 LG1 _ Min N -13.75 0.04 -3.76 0.00 0.30 -0.02 LG4 `yy 6A6 0.08,3.76 -0.00 -0.31 -0,02 LG1 Min V. 2.42 -0.06 1.26 -0.00 -0.09 -0.01 LG5 Mez l= 5.46 0.08 3.77 -0.00 -0.31 -0.02 LG3 Min V, -13.75 0.04 -3.76 0.00 0.30 -0.02 LG4 Max:MT -13:13 0.05 ` -3.76 0. 0.30 -0.02 LG2 Min MT 2.42 -0.06 1.26 -0. -0.09 -0.01 LG5 Ma- My -13.75 0.04 -3.76 0.00 0. -0.02 LG4 Min M 5.46 0.08 3.77 -0.00 -0.31 -0.02 LG3 MaxiMz " 2.42 -0.06 126 -0.00 -0.09 -0.01 LG5 Min M, 6.16 0.08 3.76 -0.00 -0.31 -0.02 LG1 77> "20:00?'MazN 4.45 0.08 3.91 -0.00 0.11 -0.04 LG1 Min N -10.15 0.04 -3.87 0.00 -0.11 -0.02 LG4 MaX'Vy 4.45 0:0& 3.91 -0.00 0.11 -0.04 LG1 Min Vv 1.53 -0.07 1.31 -0.00 0.05 -0.00 LG5 Max:y= 3.74 0.07 3.91 -0.00 0.11 -0.03 LG3 Min V7 -10.15 0.04 -3.87 0.00 -0.11 -0.02 LG4 Mdkx MT , 9.53 0.04 -3.87 0. -0.11 -0.03 LG2 Min MT 1.53 -0.07 1.31 -0.00 0.05 -0.00 LG5 - 'MaxrMY 3.74 0.07 °'3.91 -0.00 0.11 -0.03 LG3 Min -10.16 0.04 -3.87 0.00 -0.11 -0.02 LG4 ,M MaX W 1.53 -0.07 1.31 -0.00 0.05 -O.M LG5 Min M. 4.45 0.08 3.91 -0.00 0.11 -0.041 LGt AL ® RFEM 4.10.2880-Arbltrary 3D Structures solved using FEM www.diubal.com Josef Gartner GmbH Page: 40/54 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 GRAPHICS Project:,` Structure: Benchmarkl3estell-V3Dowel Date: 08/02/2013 SURFACES SIGMA-1,+, C01: LG1/P OR LG21P OR LG3/P OR LG4/P OR LG5/P C01: LG1/P or LG2/P or LG3/P or LG4/P or LG5/P Isometric Surfaces Sigma-1,+ saw 25.254 22.018 18.783 15.547 12.312 9.077 5.841 2.606 -0.630 -3.865 -7.101 -10.336 Mu: 25254 Min:-10.336 ]-4 Surfaces Max Sigma-1,+: 25.254, Min Sigma-1,+:-10.336 [N/mrri2] Values: Sigma-1,+ [N/mm2] <30.3 N/mm' see report 212100776ST-VG0001-Rev01 ® I RFEM 4.10.2660 -Arbitrary 30 Structures solved using FEM www.diubal.com Josef Gartner GmbH Page: 41/54 tH11j,Gartnerstralle 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84.2100 GRAPHICS ProjectAC2, - Structure: Benchmarkl3emell-V3Dowe1 Date: 08/02/2013 SURFACES SIGMA -I,, COI: LG1/P OR LG2/P OR LG3/P OR LG4/P OR LG5/P CO1: LG1/P or LG2/P or LG3/P or LG4/P or LG5/P Isometric Surfaces Sigma-1,- sum Q1: iWmm2) 23.097 20.058 - 17.020 13.981 10.942 7.904 4.885 1.826 .1.212 -4251 -7290 40.328 Max: 23.097 ?An: -10.328 Surfaces Max Sigma-1,-: 23.097, Min Sigma-1,-:-10.328 [N/mm2] Values: Sigma-1,- [N/mm2] <30.3 N/mm2 see report 212190776-ST-VG0001-Rev01 ® T RFEM 4.10.2680 - Arbitrary 31) Structures solved using FEM www.diubal.com Josef Gartner GmbH Page: 42/54 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel:09073/W- Fax: 09073/84-2100 RF-STEEL AISC I Protect,A -2 Structure: BenchmarkGestell-WDowel Date: 08/02/2013 RFSTEEL AISC CAI GENERAL DATA Members to design: All Design of steel memrs axording to AISC (LRbeFD or Ultimate Limit State Design ASD) Load groups to design: LG1 1.2"LC1 + 1.6'LC2 LG2 1.2'LC1-1.6'LC2 LG3 0.9'LC1 + 1.6`LC2 LG4 0.9•LC1 - 1.6'LC2 r+rto 10001 oxoea4 00 QR01 m4 0 DETAILS Check of Maximum Effective Slenderness Ratio Members with KL / r Tenslon.oniy: 300 Compression / flexure: 200 Determination of elastic critical moment for lateral -torsional buckling (set of members only) Point of applied load: On cross-section edge directed to shear center (e.g. top flange, destabilizing effect) Limit Load for Special Cases Do not consider small moments if: Mr,y / MAY 5 0.01 M"/Mp,=5 0.01 Do not consider small axial forces if: Tension Nrt / Np,t S 0.01 Compression Nr,, / Np,, 5 0.01 Do not consider small shear forces if: Vry / Vpy 5 0.01 Vrz / Vp,z 5 0.01 Limit shear stress for oross-sections with torsion: 2r/Sc5 0.01 Design Wall Thickness of HSS Use design wall thickness for design of N HSS (Reduction of nominal thickness for HSS according to B3.12) Aeonal material Descrip8on I Comment Steel S 355 Cro§s s Mahal No No Cross-Sectlat Description [mm] Comment ., 1 RRO 200x100x6.3 2 1 RRO 200x1004.3 �RRO 1 200z100x6.3 1 ORO1000 -MEMBERS 205.00 ff9 1.00 205.00 0 09 -; 25.00 W 1.00 25.00 W W 25.00 0 1.00 25.00 N W ` 305.00 0 1.00 305.00 0 W 210.00 0 1.00 210.00 0 0 210.00 0 1.00 210.00 W D9 305.00 0 1.00 306.00 N N 15.80 W 1.00 15.80 0 296.26 0 1.00 296.26 M I About Axis z KZ K=L 14 1.00 20 1.00 2 1.00 21 1.00 30 1.00 21, 1.00 21, 1.00 30' 1.00 1 1.00 29 Torsional Buckling nsible KX I KXL I L.T.B jPossible, M 1.00 205.00 U W 1.00 26.00 U Im 1.00 25.00 U 0 1.00 305.00 U W 1.00 210.00 J W 1.00 210.00 U 29 1.00 15.80 U M 1.00 296.26 U �` T RFEM 4.10.2880 -Arbitrary 3D Structures solved using FEM www.diubal.com m �l d a ppppp p pp p RNGOOSSS88SSS8SS8S OODNNNOODO. x 4 ccovi000cui00000� owa} �Np0 Nv lON�NN rN^01No U OY C _MWWNNV'NtON m O O O O O O O O N O 0 0 NNNN NNb N N pp SSSSSS SSSOSSSSSOSSSSSS NN m SSSSSSMM mcn p Y S m a a �pO�p^ oop0pp0op000000 508080888888 rrrrrr p pppppppO o .N}NQOO�pDp. OppOS SOpSp 00 p0p00 p0p000 �Ntpp N�}}N��OOpDpO WON�ONN �NiON�tON V'NNrNV ON�D -1 7. i�S S.Y A LL SS SS 8 8 0 0 S S 8 S 8 8 S S S 8 8 S 8 8 rrr r.=rrrrrrr rrrre-r OOOOOOOON O00 C NNN N NN NNCDNNN �.� to h N1n 1n 121nOl�in t[2 s 8gos sos 8s O O O O O O O O O O N 00 O O N NNN NNN NNNCDNNNN NNOODSSSSSSS08SOS OOODN RNOOD.S - 00000OOON OOO OOOOOOOOOOOOOO N0000 T �p OIACppCpp�(100000N �t�pp CpppO W NNNrN�NNN NCD IN�NNNN NN NNNNNNNNN NtONNNN i Y �01 N�ONN <N(ONN��ON�tN N rN�N CII H_.. S Cl) Cl) M�O00Cq c07fo+7.mm - ommm-O P�MOM MMM 8880888888.888,88888888 Q � aY $SS8SS00OR00888S88S888SS8SARCO 8 Yl tfi W Lo O C O Ma�pp tt►► CCppppb0 ppOpp00 pppppp ppN�A ttpp ppi�pp .a. OCW48NNMr NYO>N tONN YN�ONVtONstNNr S�Of NtO O p ppp p p p W . aRN GDS 0p80'OO pO S S pS 8 08 SN NNC0.8 C^ Y01S fODNN �NtON(ON'V NO.O-(d pppo cWc V® r N Nd' N N-Of C4 6 �C �nIOU LLI Z''�nuiru5�wm�°nnn�r°D�aopo�im��y Nrivin�ot�r°,°;�imc�ci'"��i�mm���Plonr°��`roa�o��'w E 3 Josef Gartner GmbH Page: 44/64 Uffl, GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 RF-STEEL AISC 0 Project: ;7A Structure: SenchmarkGestali-Mowel Date: 08/02/2013 RF-STEEL AISC DESIGN BY LOAD CASE CAI LG/LGC` Load Case or Member location x Aoc. to Design of steel members CO LGlCq Description Nc x 1-1 Design Formula acwrling to AISC (LRFD or ASD) Ultimate Limit State Design LG1 i' I 53 I 0.001 0.74I51 I 332) IUL Chapter H - Single axis ]or biaxial/ flexure with axial compressive force - acc. to H1.1 Design Internal Forces P -15.58 kN V= 18.65 kN My -11.19 kNm Vy -40.31 kN T -0.03 kNm M= -24.29 kNm Design Ratio Tic 0.01 71b,2 0.58 qby 0.16 rl 0.74 1 5 1 0.001 0.56151 1 332) JUL rr Chapter H - Single axis for biaxial/ flexure with axial compressive force - acc: to H1.1 Design internal Forces P -57.79 kN Vz 0.03 kN My 38.33 kNm Vy 0.00 kN T 0.00 kNm Mz -0.30 kNm r Design Ratio me 0.06 Tib,z 0.00 +tby 0.63 n 0.56 1 53 1 0.001 0.69151 1 332) JUL Chapter H - Single axis /or biaxial/ flexure with axial compressive force - ace. to H1.1 Design Internal Forces P -15.61 kN V= 18.55 kN My -11.13 kNm Vy -36.66 kN T -0.03 kNm M= -22.08 kNm Design Ratio me 0.01 qbz 0.53 11b,y 0.15 n 0.69 i LG4 5 0.001 0.561 51 1 332) JUL Chapter H - Single axis /or biaxial/ flexure with axial compressive force - acc. to H1.1 DeslgniMernai Forces P 56.18 kN Vz 0.03 kN My 37.96 kNm Vy 0.00 kN T 0.00 kNm Mz -0.29 kNm Design Raflo nc 0.06 11b,z 0.00 Eby 0.53 A 0.56 LG5 I 90 I 0,001 0.48151 1 331) 1UL Chapter H - Biaxial bending without axial forces- sec. to H1.1 Design internal Forces P -5.23 kN Vz -14.51 kN My 8.74 kNm '{ Vy -24.86 kN T 0.02 kNm Mz -14.98 kNm Design Ratio T1 b,y 0.12 nb,z 0.36 q 0.48 INTERNAL FORCES BY MEMBER Member fia ;"tor x _ Isnn] __ Load Cgse Fortes [kN] N - Vy Vz Moments [kNm] MT My Mz Ax. to Formula 1 Crossaec o.2., RR0200x100x6.3 195.24� LG5 4.351 -0.05 -2.49 -0.031 -0.671 -0.02 1 100) 1 1 Negligible internal forces 4&81'I LG2 'I 20.751 -0.031 11.351 bb2 0.001 -15.581 -0.171 101) Chapter D -'Tensile strength arc. to 0.001 LGt 1 7.17 0.34 � 12.581 0.001 23.321 -0.111 111) Chapter F -Yielding - Bending about y-axis arc. to 2 - F12 0:00 LGt I 7.171 0.341 -12.58I 0.001 23.321 -0.111 126) Chapter F--Ioce1 buckling of HSS section does not apply - arc. to F7 0.00� LG3 6.57I 0.281 -12.64� 0.001 23.311 -0.111 160) Chapter G - Nominal shear strength n z-axis - ace. to G2 (G4,G ) - Unstiffened web "0.001 LG2 16.311 0.101 12.59I 0.001 -22.731 -0.161 333) Chapter H - Single ax a /or biaxiaV flexure with tensile force - acc. to H1.2 2 CrSbs 216 38I0x8.S 0.00I LG2'4 L'RR0 -0.10I-12.59I 0.001 -22.72I -0.161 101) Chapter D - ensile strength acc. to b2 2&001 LG5 1-16.43I -0.421 4.241 -0.031 9.131 0.001 102) Chapter E- Comprassfve strength acc. to E3 25.001 LG1 43.27I -0.44 13.591 0.001 27.391 -0.261 111) Chapter F -fielding -Bending about y-axis ate. to 2 - F12 0401 LG1 'I; 7.00 - -0.341 12.591 0.001 23.311 -0.111 126) Chapter F =Local buckling or HSS section does not apply - arc. to F7 25.00 LG4 I 15.52-0.111-13.741 0.001 -26.781 -0.131 160) Chapter G - Nominal shear strength m z-axis - acc. to G2 (G4,G5) - Unstiffened web 25.00 LG5 '14.241 9.131 0.001 301) -16;43-0.421 Chapter E - Flexural buckling about -axis aoc. to E3 -0.031 25.00LG5 1-16.431 -0.421 4.241 -0.031 9.131 0.001 311) ® T RFEM 4.10.2680 -Arbitrary 3D Structures solved using FEM www.diubW.com Josef Gartner GmbH Page: 45/54 11 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073184-0 - Fax: 09073/84-2100 RF-STEEL AISC Project -AC23 . Structure: SenchmarkGesial(-WDowe1 Date: 08/02/2013 GOVERNING INTERNAL FORCES BY MEMBER tl9init er Lpc x Laatl ,. - --` Forces (M] Moments (kNmj Aeo. to Ho 9(anj Case r, N Vy V. MT ; My M= I Formula s Chapter E - Flexural budding about z-axis sec. to E3 25.0% LG5 1 '-16.431 -0.421 4.241 -0.031 9.131 0.001 321) Chapter E -'Torsional buckling ace. to E4 25.001 LG1 1 13.271 -0.441 13.591 0.001 27.391 -0.261 332) Chapter H - Single axis /or biaxial/ flexure with axial compressive force - sec. to H1.1 25,001 LG4 1 16.621 -0.111-13.741 0.001 -26.781 -0.131 333) Chapter H - Single axis /or blaxiail flexure with tensileforce - acc. to H1.2 25.001 LG1-13.271 -0.441 13.591 0.001 27.391 -0.261 334) Chapter H - Compressive force with single/major axis bending - ace. to 1­11.3 C "' `NG5. 21 RRO 202X7.Oix6.3 -0.061 3.901 0.041 0.001 0.031 100) Negiigible'Int�ernal forces 0.001 LG1 I 16.811 0.041 11.971 0.021 -3.121 -0.131 101) Chapter D -`tensile strength ace. to 2 0,00I LG2 II 15j591 -0.021-12.111 -0.021 3.141 -0.131 111) Chapter F -Yielding -Winding about y axis ace. to F2 - F12 0.001 LG1 16.811 0.041 11.971 0.021 3.121 -0.131 126) Chapter F - Local bu ing of HSS section does not apply - ace. o F7 26.001 LG2 .1 -6.71 -0.101-12.441 �n -0.021 -0.011 0.091 160) Chapter G;= Nominal shear strength z-axis - acc. to G2 (G4;G5) - Unstiffened web 0.001 LG7 16.811 0.041 11.971 0,021 -3.121 -0.131 333) Chapter H -Single axis for biaxial/ flexure with tensile force - acc. to 1­11.2 4 Cross s 2 : RRO 200x100x6,3 305 .00 L 1 16.821 0.041 11,971 b2 0.021 3.121 -0.131 101) Cacc._ hapter D - 'ensile strength a, to 0.001 LG2 1-38.771 -0.141 -6.291 -0.011 32.071 -0.181 102) Chapter E - Compressive strength acc. to E3 111) 0.001; LG2, 1-36.771 -0.141 -6.291 -0.011 32.071 -0.181 Chapter F - Yielding - Bending about y-axis aoc.to F2 - F12 0.00I LG1-37.24-0.141 6.22II 0.011 -31.871 -0.171 126) Chapter F -Local bu ing of HSS section does not apply -ace. fo F7 305.001 LG2 I 15.591 -0.021-12.11I -0.021 3.141 -0.131 160) Chapter G - Nominal shear strength n z-axis - soc. to G2 (G4,G5) - Unstiffened web 0.001 LG2 1-38.771 -0.141 -6.291 -0.011 32.071 -0.181 301) Chapter E - Flexural buckling about 1 r-axis aoc. to E3 Q.00 ;>LG2 1 -38.n -0.141 -6.291 Flexural -0.011 32.071 -0.181 311) Chapter E - buckling about z-axis ace. to E3 0.001 LG2 1 -08.77 1 -0.141 -6.291 -0.011 32.071 -0.181 321) Chapter E - Torsional budding acc. to E4 O.00j ,LG2 1:, -36771 -0.141 -6.291 -0.011 32.071 -0.181 332) Chapter5 81 Single ax1s,lor biaxial/ 7 with aal compressive force - sec. to H1.1 1 9.081 -0.041 333) Chapter H -Single �s /or biaxial/ flexure with tenslile force - acc. to H 1.2 0.001 LG2 1.-38.771 -0.141 -6.291 -0.011 32.071 -0.181 334) Cfiapter H - Compressive force with single/major axis bending - acc. to 1-11.3 S Cross 0.00 oWtq 21- RRO 2 SOxa80I x8.3 0.001 0.031 0.001 38.331 -0.30 102) Chapter E - Compressive strength acc. to E3 0,00II LG2 1-57.781 0.001 0.031 0.001 38.331 -0.301 111) Chapter F - Ylelding -Bending about y axis acc. to F2 - F12 nr ' 0.00 LG1 -56.32 0.001 -0.031 0.001 -38.08 1 -0.28 1 126) Chapter F - Local bu ing of HSS section does not apply - sec. to F7 210.001 LG2 I-38.761 -0.141 -6.331 -0.011 32.071 -0.181 160) Chapter G -Nominal shear strength,In z-axis - acc. to G2 (G4,G5) - Unstiffened web 0.00 LG2 1 -5 J81 0.001 0.031 0.001 38.331 -0.301 301) Chapter E - lexural budding about -axis ace. to E3 0.001 LG2 0.001 0.031 0.001 38.331 -0.301 311) 1_-57.78� Chapter E Flexural buckling about is acc to E3 0.001 LG2 1-57.781 0.001 0.031 0.001 38.331 -0.301 321) Chapter E - Torsional buckling acc. to E4 w 0.001 LG2, I, 57.781 0.001 0.031 0.001 38.331 -0.301 332) T : Chapter; H -i Single axis /or blaxiaU flexure with axial compressive force - ace. to H 1.1 � 0.001 LG2 1--67.781 0.001 0.031 0.001 38.331 -0.301 334) Chapter H - Compressive force with single/major axis bending - acc. to H1.3 w Cross sea ogak 2 RRO 200x100x6.3 2t0.00 LG2 j-57.781 0.001 -0.031 0.001 38.331 -0.301 102) ChaE - Compressive strengthace. to E3 210.001 LG2 1-57.781 0.001 -0.031 0.001 38.331 -0.301 111) Chapter F -Yielding -Bending about y-axis ace. to F2 - F12 4 0.001 "LG1 1'-37.231 0.141 -6.261 -0.011 -31.871 -0.171 126) .Chapter F =:Local buckling of HSS section does not apply - am to F7 0.001 LG2 1-38.761 0.141 6.331 0.011 Chapter G - Nominal shear strength In z-axis - acc. to G2 (G4,G5) - Unstiffened web 32.071 -0.181 160) r 210.00 LG2 1 '-b7.781 0.001 -0.031 ='�lexurel 0.001 38.331 -0.301 301) . Chapter Ebudding about axis ace. to E3 210.00� LG2 ( -57.787 0.001 -0.031 0.001 38.331 -0.301 311) Chapter E - lexural budding about z-axis ace. to E3 210,001 LG2 1-67.781 0.001 -0.031 ChapterEl- Torslonal'budding to E4 0.001 38.331 -0.301 321) acc. 210.001 LG2 1-57.781 0.001 -0.031 0.001 38.331 -0.301 332) Chapter H -Single axis to biaxial/ flexure with axial compressive force - sec. to H1.1 210,001 LG2 1 57.781 0.001 -0.031 0.001 38.331 -0.301 334) Co Chapter H -mpressive forge with single/major axis bending - acc. to H1.3 RFEM 4.10.2680 - Arbitrary 3D Structures solved using FEM ! vwwv.diubal.com Y Josef Gartner GmbH Page: 46/54 GartnerstraMe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0- Fax: 09073/84-2100 RF-STEEL AISC Project A,2 Structure: BenchmatkGesbell-Mowei I Date: 08/02/2013 j4fember Locx Lead Farces [IN] N _ Vy V. Moments [kNmj Mr _ My M, Ace. to Formula K7U Cam; 0.00 �1 2 i RR0.216 $ OOx8.3' -0 041-11.971 -0.021 -3.121 -0.131 101) Chapter D - ensile strength acc. to 2 =' 305.001' LG2 38:781 0.141 6.301 0.011 32.071 -0.181 102) Chapter E -.Compressive strenggth ace. to E3 305.001 LG2 1 -9.781 0.14 6.301 0.011 32.071 -0.181 111) Chapter F - yielding - Bending about y-axis acc. to 2 - F12 0.00[ 1" 16.821 - -0.041-11.971 -0.021 -3.121 -0.131 126) ,LG1 Chapter F - tocatbuddmg of HSS section does not apply - acc. to F7 0.001 LG2 1 15.590.021 12.111 0.021 3.141 0.131 160) Chapter G - Nominal shear strength m z-axis - acc. to G2 (G4,G5) - Unstiffened web 305.00[ LG2 1-38.78[ 0.141 6.301 0.011 32.07� -0.18i 301) Chapter E-;Fiaxurei buckling about axis ace, to E3 305.00I LG2-38.78� 0.141 6.301 0.011 32.071 -0.181 311) Chapter E - Flexural budding about z-axis acc. to E3 '' 305,001 LG2 1-38.781 0.141 6.301 0.011 32.071 -0.181 321) <� Chapter E.- arsional Buckling acc, toE4 305.001 LG2-38.781 0.141 6.301 0.011 32.071 -0.181 332) Chapter H -Single axis for biaxial/ flexure with axial compressive force -acc. to H1 A 49.191 LG1 1 12.071 -0.061-11.431 -0.021 -9.081 -0.041 333) Chapter H - Single axis /or biaxial/ flexure with tensile force -act to H1.2 305.00I LG2 1-38.781 0.141 6.301 0.011 32.071 -0.181 334) a Chapter H - Compressive force with single/major axis bending -acc, to H1.3 48 efaaS41eO orift; 1 - RRO 200x100x8.3 0.00LG1 ( 16.091-19.931 10.021 0.001 0.001 0.001 101) :Chapter D - ensile strength acc. to 02 15.801 LG2-16.041 31.591 -8.021 0.001 1.271 5.001 102) Chapter E -Comppressive strength acc. to E3 15.80[ LG3 1= 16.081-21.251 10.061 0.001 1.591 3.351 111) Ch apter F -Yielding - Bending about acc. to F2 - F12 15.80 LG2 ( 16.04 31.591-8.021 Melding Bending to F2 F12 0.001 -1.271 -5.001 112) Chapter F - - about z-axis acc. - 7.90 LG1 1 16.09[-19.961 10.021 budding section does notapply - acc. to F7 0.001 0.791 1.581 126) z ChapterF -'Local ofHSS 15.80I LG2 I-16.041 31.591 -8,021 0.001 bu HSS due to F7 -1.271 -5.001 146) tr Chapter F - Local ing of section moment about minor axis 0.001 LG3 1 16.081-21.211 10.061 - acc. 0.001 0.001 0.001 160) ( Chapter G - Nominal shear strength in z axis-acc. to G2 (G4.G5) - Unstfffened web 0.001 LG2 1-16.021 31.651 -8.021 0.001 0.001 0.001 161) Chapter G -Nominal shear strength n y-axis - acc. to G7 (G4,G5) - Unstiffened web 15.80I, . L02 (< 16.041 31.591 8.021 -Flexural to E3 0.001 -1.27 5.001 301) Chapter E budding about -axis ace. 15.80I LG2 1-16.04� 31.591 -8.021 0.001 -1.271 -5.001 311) Chapter E -Flexural buckling about z-axis acc. to E3 15,801 LG2 "j'. -16.041 31.59) 6.021 0.001 1.271 5.001 321) Chapter E-- orsional buckling aoc. to E4 15.801 LG5 5.381 3.701 5.591 0.001 0.891 0.58 331) Chapter H - Biaxial bending without axial forces - acc, to H1.1 16.801 LG2 I:-16.041 31.691 -8.021 0,001 -1.271 5.001 332) Chapter H - Single ax s /or blaxfaV flexure with axis compressive force -acc to H1.1 15.601 LG3 16.081-21.25[ 10.061 0.001 1.591 3.351 333) Chapter H -Single axis /or biaxial/ flexure with tensile force - acc. to H1.2 7,901 LG2 1'-16.031 31.631 , -8.021 0.001 -0.631 -2.501 335) Chapter H - Compressive force with single/minor axis bending - acc. to H1.3 49 c, cq.n LNo s": CRo 8oxa b 1 I 6 G3 1 35.17 0.00 -0.04 0.00 I 0.00 0.00 101) 1 1 Chapter D - ensile strength aoc. to 2 0.001 LG2 1;-43.391 0.001 0.101 0.001 0.001 0.001 102) Chapter,Ii - Compressive strength acc: to E3 126.97I LG5 i 8.971 -0.01 0.021 �2 0.001 0.081 0.041 111) Chapter F -Yielding - Bending about y-axis acc. to - F12 84.65I G2-43.331 0.001 0.061 L Chapter F -Local bu1ing HSS does to F7 0.001 0.061 0.001 126) -� " z of section not apply - acc. 0.00� LG2 1-43.391 0.001 0.101 0.001 0.001 0.001 301) Chapter E - lexural buckling about -axis acc. to E3 0001 LG2 1-43.391 0.001 0.101 0.001 0.001 0.001 311) Chept budding 3 z-axis acc.0.001 0 001 LG2 1 -43.ral 0.101 0.001 0.001 0.001 321) Chapter E - Torsional buckling acc. to E4 126,971 LG2 1-43.291 0.001 0,021 0.001 0.081 0.001 332) 'Chapter H - Single axis /or biaxial/ flexure with axial compressive force - acc. to H1.1 169.291 LG5 J 8.991 0.01 t -0.021 0.001 0.081 0.041 333) Chapter H - Single axis /or biaxial/ flexure with tensile force -acc. to H1.2 126.971 LG2 ( 43.291 0.001 0.021 0.001 0.081 0.001 334) Chapter H - Compressive force with single/major axis bending - acc. to H1.3 tiQ CYa 44tlorrL f 1.2 1-;RR0200 0�x8.3 - 8.951 10.081 Chapter F�3 ieiding about acc. to 2 - F12 -0.041 16.131 -9.821 111) - -Bending y-axis 144.20I LG1 1 - -0.641 9.311 10.041 Chapter F12 -0.041 16.071-10.611 112) F -Yielding -Bending about z-axis acc. to F2 - 0.00 LG1 I -0.55� 9.791 10.051 F7 0.001 1.581 3.151 126) Chapter F - Local buckling of HSS section does not apply - acc. to 144201 LG1 ,1 -0.641 9.311 10,041 -0.041 16.071-10.611 146) ® T RFEM 4.10.2810 -Arbitrary 3D Structures solved using FEM www.diubal.com Josef Gartner GmbH Page: 47/54 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073184-2100 RF-STEEL AISC Project: 1 2 Structure: BenchmarWasiell-Mowei f Date: 08/02/2013 GOVERNING INTERNAL FORCES BY MEMBER FlAembe; Locx ` Load, Forces ]kN] N Vy V. Moments ]kNm] MT My MZ Acc. to Formula Chapter F - Local budding of HSS section due moment about minor axis - aoc. to F7 0.001 LG3 -1.00 9.311 10,081 In 0.001 1.591 3.351 160) Chapter G -Nominal shear strength z-axis - aoc. to G2 (G4,135) - Unsttffened web r 0.001 LG1 J -0.551 9.791 10.051 0.001 1.581 3.151 161) Chapter G - Nominal shear strength in y-axis - acc. to G7 (G4,G5) - Unstiffened web 144.201 LG1 -0.641 9.311 10.041 -0.041 16,071-10.611 331) Chapter H - Biaxial bending without axaal forces - acc. to 1-11.1 $1 Cros 1s 0.13 4' RR0 2 O 2 �x6.S. -0.041 3.931 0.001 0.431 0.021 100) Negligible "Internal foroe 91.201 LG2-17.69I 0.051-13.631 0.001 -11.511 0,081 102) Chapter E - Compressive strength aoc. to E3 0.081 111) 91.201 LG2 j-17.691 0.051-13.631 0.001 -11.511 Chapter F -'Yielding = Bending about y-axis acc. to F2 - F12 10.131 LG1 1 0.691 -0.021 12.391 0.001 1.201 0.051 126) Chapter F -Local buckling of HSS section does not apply - sec. to F7 91-.201 LG2 -17.69) 0.051-13.631 0.001 -11.511 0.081 160) Chapter G - Nominal shear stren h in z-axis - ace. to G2 (G4,135) - Unstiffened web 91.201 LG2 I-17.691 0.051-13.631 0.001 -11.511 0.081 301) " Chapter E - Flexural buckling about axis aoc. to E3 91:201 LG2 1-17.691 - 0.051-13.631 0.001 -11.511 0.081 311) Chaptei.E - 1exural budding about z-axis ace, to E3 91.201 LG2 1-17.691 0.051-13.631 0.001 -11.511 0.081 321) Chapter E - Torsional buckling sec. to E4 91.201 LG2 "I-17.691 0.051-13.631 0.001 -11.511 0.081 332) i i or biaxi�169lexure with compressive force - a0I H1.1 Cfiapt9l LgG2aXis 20� O$i _11.51 0.081 334) F c ; Chapter H - Compressive force with single/major axis bending - acc. to 1-11.3 • $2 Cross�eCybn No- .- RR0 200x100x8.3 1$9.121' LG4 I 24.23� 0.041 3.791 0.001 3.951 -0.151 101) Cha 22558 801`rBLGt 1 site strength aoc. to 56.85I 2 -0.141 1.591 0.001 13.801 -0.311 102) Chapter E - Compressive strength aoc. to E3 288.801 LG7 I-56.85I -0.141 1.591 0.001 13.801 -0.311 111) Chapter F - elding -: Bending about y-axis acc. to F2 - F12 j 0.001 1-61 �-27.211 0.021 -2.951 0.001 11.341 0.101 126) Chapter F -Local bu ing of HSS section does not apply - ace. to F7 0.00 1 1 LG2 (' 16.871 0.011 7.541 0.001 - to G2 Unstiffened -11.511 0.041 160) Chapter G,-' Nominal shear strength n z-axis acc. (G4,G5) - 258.66 LG1 1-56.851 .0.141 1.591 web 0.001 13.801 -0.311 301) Chapter E - kexural buckling about -axis ace. to E3 1.591 0.001 13.801 311) 258.80I LG7 I 56.85� -0.141 Chapter E - Flexural budding about z-axis acc. to E3 -0.311 258.801 LG1 1-56.85I -0.141 1.591 0.001 13.801 -0.311 321) Chapter E -`torsional budding ace. to E4 268.801 LG1 1-66.85I' -0.14� 1.591 0.001 13.801 -0.311 332) Chapter H -;Single axis /or biaxial/flexurewith axial compressive force - aoc. to 1-11.1 0.001 LG2 1 16.87I 0.015 7.541 0.001 -11.511 0.041 333) Chapter H - Single axis /or biaxiall flexure with tens Is force - sec. to H1.2 258.801 LG1 1.-56.851 - -0.141 1.591 0.001 13.801 -0.311 334) Chapter H.- Compressive force with single/major axis bending - acc. to 1-11.3 - 60.00 LG4"1I RR0205 �OOx6.3 14.48I 23.16� Chapter D - ensile strength sec. to 2 0.001 0.001 0.001 101) 0:00} LG3 1 -15:61 j-36.661 18.551 - -0.031 A 1.131-22.081 102) Chapter E - Compressive strength ace. to E3 8.741 111) 0.00I LG4 1 15.651 14.661-23.181 -0.011 13.901 Chapter F -Yielding - Bending about y axis acc. to F2 - F12 0.001` LG1 I;-15.581 -40.31 18.651 -0.031 -11.191-24.291 112) Chapter F ;Yielding - Sending about ¢-axle acc. to 2 - Ft Z 0.00 LG1 I-15.581-40.311 18.651 -0.031 -11.191-24.291 126) Chapter F - -ocal buckling of HSS section does not apply - ace. to F7 0.00 LG1-16.581-40.311 18.661 -0.031 -11.191-24.291 146) u . Chapter F =a oval bu ling of HSS section due moment about minor axis - ace. to F7 0.001 LG4 1 15.65I 14.661-23.181 -0.011 13.901 8.741 160) Chapter G - Nominal shear strenggtt�hl m z-axis - acc. to G2 (G4,G$) - Unstiffened web 60.001 LGII 1 1 .301-40.611 18.661 0.001 0.001 0.001 161) Chapter G- Nominal shear strength m y-axas - ace. to G7 (134,135) - Unstiffened web 0.00� LG3 I 15 61I 36.661 18.551 -0.03� -11.131-22.081 301) Chapter E - lexural budding about axis sec. to E3 0.001 LG3 ' 1-15.611-36.661 18.551 -0.031 -11.131-22.081 311) Chaplet E= Flexural budding about z-axis acc. to E3 0.001 LW I 15.61-36.661 18.551 -0.031 11.131 22.081 321) n Chapter E -torsional buckling acc to E4 0.001 LG5 1 -5.161-19.971 -1.191 0.001 0.751 12.051 331) Chapter H -.Biaxial bending without axial forces - acc. to H1.1 0.001 LG1 1-15.581-40.311 18.651 -0.031 -11.191-24.291 332) Chapter H - Single axis /or biaxial/ flexure with axial compressive force - acc. to H1.1 O.00j "LG4 I 16,651 14.661 -23.181 -0.011 13.901 8.741 333) Chapter H - Single axis /or biaxial/ flexure with tensile force- aoc. to 1-11.2 C 25.001 LG2 21; RR0 2 x 00x6.3 0.101 12.591 ju� 0.001 -22.721 -0.161 101) Chapter D - ensile strength sec. to 2 ® RFEM 4.10.2680 -Arbitrary 3D Structures solved using FEM www.diubal.com Josef Gartner GmbH Page: 48/54 Gartnerstra& 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: OW73/84-2100 RF-STEEL AISC Project:,; , Structure: BenchmarkGesteil43Dowe1 Date: 08/02/2013 GOVERNING INTERNAL FORCES BY MEMBER COO"' C Lao x Load Forces [kNI Moments [kNml Ace. to fIP {eml :Case N Vy V. Mr Mr AAz Formula 0.00 LG1 -13.27 0,44 -13.59 0.00 27.39 -0.26 102) Chapter E - Compressive strength aoc. to E3 0.001 LG1 1-13.270.441-13.591 0.001 27.391 -0.261 111) ` Chapter F - Yielding - Bending about y-axis acc. to F2 - F12 Y 0.00 LG1 1-13.271 0.441-13.591 Chapter F - coal buckling of HSS section does not apply - acc. to F7 0.001 27.391 -0.261 126) 0.001 LG4 15.52 0.111 13,741 �n 0.001 -26.781 -0.131 160) Chapter G - Nominal shear strength z-axis - acc. to G2 (G4,G ) - UnstHtened web 0.00) LG1 1;-13.271 0,441-13.591 0.001 27.391 -0.261 301) Chapter E - Flexural buckling about y-axis acc. to E3 0.001 LG1 ( -13.27 0.441 -13.59 1 0.001 27.391 -0.261 311) m Chapter E - Flexural budding about z axis acc. to E3 0.001 LG1 1-13.271 0.441-13.591 0.001 27.391 -0.261 321) >. Chapter. E -;'Torsional buckling acc. to E4 0.001 LG1 1-13.271 0.44�-13.591 0.001 27.391 -0.261 332) Chapter H - Single axis /or biaxial/ flexure with axial compressive force - aoc. to H1.1 0.001' LG4 I15.521 0.111 13.741 0.001 -26.781 -0.131 333) Chapter H - Single axis Ior biaxial/flexure with tensile force - acc. to H1.2 0.001 LG11 -13.271 0.441-13.591 0.001 27.391 -0.261 334) Chapter H - Compressive force with singletmajor axis bending - acc. to H1.3 60 Goss on �o`. !S=QR0100x4 10.00 LG7 ( 4A51 -0.091 3.911 0.001 -0.281 -0.031 101) Chapter D --Tensile strength aoc. to D2 10.001 LG4 1-10.151 .0.051 3.871 to E3 0.001 0.281 -0.021 102) Chapter E - Compressive strength acc. 20.001 LG3 1 1 5.461 -0.081 3.771 0.001 -0.311 -0.021 111) Chapter F - Yielding - Bending about y-axis aoc. to F2 - F12 10.00 LG1 I 4.45I -0.091 -3.911 0,001 -0.281 -0.031 126) Chapter F - Local buckling of HSS section does not apply - acc. to F7 `s 0.001 LG3 'I 3:741 -0.071 -3.911 0.001 0.111 -0.031 160) Chapter G"- Nominal shear strength in Z-Ms - acc. to G2 (G4,G5) - Unstiffened web 10.00 LG4 ( -10.15 -0.051 LG4 0.001 0.281 -0.02 301) Chapter budding about -axis acc. to E3 Chapter E - 10.00 LG4 j"" -10.15 -0.051 3.871 0.001 0.281 -0.021 311) Chapter E -Flexural buckling about z Is ax to E3 10.001 LG4 1-10.151 -0.051 3.871 0.001 0.281 -0.021 321) Chapter E - Torsional budding acc. to E4 20.001 LG4 I-13,751 -0.041 3.761 0.001 0.301 -0.021 332) Chapter H ?:Single axis /or biaxial/ flexure with axial compressive force - acc. to H1.1 20.001 LG1 1 6.161 -0.081 -3.761 0.001 -0,311 -0.021 333) Chapter H - Single axis /or biaxial/ flexure with tensile force - ace. to H1.2 20.001 L134 1-13.751 -0.041 3.761 0.001 0.301 -0.021 334) Chapter H - Compressive force with single/major axis bending - acc. to H1.3 61 Gloss�ec off"W.1-QR0100x4 0.00� LG5 1 -1.421 0.071 -1.191 0.001 0.021 0.001 100) Negligible intemal forces 30.001 LG2 { 10.041 -0.051 3.491 0.001 0.311 -0.021 101) Chapter D -'Tensile strength am. to D2 30.001 LW 1-21.181 -0.061 -3.80 1 0.001 -0.331 -0.021 102) Chapter E - Compressive strength acc. to E3 111) 40.001 LG3 I-24.701 -0.051 -3.691 0.001 -0.351 -0.021 4' Chapt10 00I eLG1� _ endin Y-axis 2 - F1-4.021 -13.03 -0.081 Local F7 0.001 -0.291 -0.031 126) Chapter F - budCling of HSS section does not apply - acc. to 0.001 LG3 I-13.741 -0.061 -4.031 0.001 Chapter G - Nominal shear strength in aoc. to G2 (G4,G5) - Unstiffened web 0.111 -0.031 160) z-axis - 30.00 3 1-21.181 -0.061 -3.801 0.001 -0,331 -0.021 301) Chapter E - Flexural buckling about -axis aec. to E3 30.001 LG3 1,-21.18� -0.061 3.801 0.001 -0.331 -0.021 311) Chapter E �-Flexural buckling aboufz azis ace, to E3 30.001 LG3 1-21,181 -0.061 3.801 0.001 -0.331 -0.021 321) Chapter E - Torsional buckling acc. to E4 40.001 LG3 1-24.701 -0.051 3.691 0.001 -0.351 -0,021 332) " Chap 40r -I Single is /or brad flexure with axxiial compressive) force - acc. H1.1 0.33 A.02 333) z Chapter H - Single axis /or biaxial/ flexure with tensile force - ace. to H 1.2 " 40.001 LG3 1!-24.701 -0.051 -3.691 0.001 -0.351 -0,021 334) Chapter H - Compressive force with single/major axis bending - aoc to H1.3 tiY C 10.00 Go: S I- t3R0107 781 -0.071 3.621 0.001 -0.331 -0.021 101) Chapter D - ensile strength aoc. to D2 10.0011 LG4 ,I-17.221 -0.031 3.651 0.001 0.321 -0.021 102) Chapter E -:Compressive strength ace. to E3 20.001 LG3 1 8.611 -0.061 -3.481 0.001 -0.341 -0.021 111) f Chapter F - Yielding - Bending about y-axis acc. to F2 - F12 10.00ff LGII 1 7.781 -0.071 3.621 0.001 -0.331 -0.021 126) Chapter F = Local buckling of HSS section does not apply - acc, to F7 0.00 LG4 1-17.221 -0.021 3.661 0.001 -0.051 -0.021 160) Chapter G - Nominal shear strenggth in z-axis - ace. to G2 (G4,G5) - Unstlffened web 10.00 LG4")-17.221 -0,031 3.651 �lexural 0.001 0.321 -0.021 301) Chapter E = buckling about axis acc. to E3 10.001 LG4 I-17.22T -0.031 3.651 om1 0.321 -0.021 311) = Chapter E - Flexural buckling about z-axis acc. to E3 10.001 LG4' 1-17.221 -0.031 3.651 0.001 0.321 -0.021 321) ® RFEM 4.10.2680 - Arbitrary 3D Structures solved using FEM www.diubal.com M Josef Gartner GmbH Page: 49/54 Gartnerstraft 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 RF-STEEL AISC Project: ACZ Structure: SenchmarkGoeiell-Mowel Date: 08/02/2013 GOVERNING INTERNAL FORCES BY MEMBER Aember =Loci ,. Load Forces [kN] Moments [kNm] ACC. to _ Case. ` N Vy V= MT My MZ Formula Chapter E -`Torsional budding acc. to E4 20.001 LG4 1-20.571 -0.031 3.541 0.001 0.341 -0.021 332) Chapter H -Single axis /or biaxial/ flexure with axial compressive force - acc. to H1.1 20.001 LG1 19.311 -0.061 -3.471 0.001 -0.341 -0.021 333) Chapter H -Single axis /or biaxiaV flexure with tensile force -ace. to H 1.2 20.001 LG4 1-20.571 -0.031 3.541 0.001 0.341 -0.021 334) t Chapter H - Compressive force with single/major axis bending - acc. to 1­11.3 63 Y r00oss4ec orrNo.`2.-RRO 200x100x6.3 60.001 LG3 ' 1-27.891 0.001 -5.501 0.001 -9.841 -0.051 102) "Chapter E - Compressive strength am. to E3 111) 60.001 LG1 I-26.551 0.001 -5,491 0.001 -9.841 -0.051 Chapter F - Yielding - Bending about y-axis acc. to F2 - F12 0.001 LG1 '[-15.941 -0.091 -7.031 0.001 -5.731 -0.051 126) Chapter -Local buckling of HSS section does not apply - aoc. to F7 0.001 LG3 1-17.341 -0.091 -7.04II O.001 -5.731 -0.051 160) Chapter G - Nominal shear strength in z-axis - acc. to G2 (G4,G$) - Unstiffened web 60:001 LG3 1<-27.891 0.001 -5.501 0.001 9.841 -0.051 301) Chapter E --Flexural budding about axis acc. to E3 311) 60.001 LG3 1-27.89� 0.001 5.501 0.001 -9.841 -0.051 Chapter E - Flexural buckling about z axis acc. to E3 60.001 LG3 :j-27.891 0.001 -5.501 0.001 -9.841 -0.051 321) ` Chapter E - Torsional buckling ace: to E4 \ 60.001 LG3 1 -27.89 1 0.001 -5.501 0.001 -9.841 -0.051 332) Chapter H - Single axis /or biaxial/ flexure with axial compressive force - acc. to H1.1 60.001 LG3 1: -27 891 0.001 5.501 0.001 -9.841 -0.051 334) Chapter H - Compressive force with single/major axis bending - ace. to H1.3 68, C O.00o LG5Y2I-RRO202700x6.3 0.081 3.901 0.041 0.001 0.031 100) Negligible internal forces 25.001 LG1°1 16.811 -0.041-11.971 -0.021 -3.121 -0.131 101) Chapter D - Tensile strength aoc. to D2 25.001 LG2 1 15.591 0.021 12.111 0.021 3.141 -0.131 111) Chapter F - Yielding - Bending about y-axis acc. to F2 - F12 8.331 LG1 = [ 7.891 0.011-12.201 -0.021 -1.041 -0.101 126) Chapter F -:Local buckling of HSS section does not apply - aoc. to F7 0.001 LG2 -6,71 0.101 12.441 �n 0.021 -0.011 0.091 160) Chapter G - Nominal shear sVength z-axis - acc. to G2 (G4,G5) - Unstiffened web 26.Wl LG1 1 16.811 -0.041-11.971 -0.021 -3.121 -0.131 333) Chapter H - Single ax(a /or blaxiaU flexure with tensile force - ace. to H1.2 70 G"ros2 cqo RRO 00 010x6.3 LNo.2l O 890.001 0.011 0.001 16.081 0.13 102) Chapter E-'ComGprressive strength acc. to E3 210.001 LG1 1-41.68) 0.001 0.011 0.001-16.081 -0.141 111) Chapter F - Yielding -Bending abouty-axis aoc. to F2 - F12 0.00) LGi-26.541 0,001 5.501 0.001 -9.841 -0.051 126) Chapter F -Local bu ing of HSS section does not apply - acc. to F7 0.001 ,LG3 1-27.891 0.001 -5.511 0.001 -9.841 -0.051 160) Chapter G -"Nominal shear strength' in z-axis - am. to G2 (G4,G5) - Unsfi fend web 210.001 LG3 1-42.891 0.001 0.011 0.001-16.081 -0.131 301) Chapter E - Flexural buckling about -axis acc. to E3 210.001 LG3 ` 1-42.89� 0.001 0.011 0.001-16.081 -0.131 311) Chapter Flexural blkacMingabout z-axis axis acc. to .001 001 0.011 0.001-16.081 -0.131 321) Chapter E - Torsional budding acc. to E4 '210.001 LG3 1-42.891 0.001 0.011 0.001-16.081 -0.131 332) Chapter H -::Single a s /or biaxial/flexure with axial compressive force - acc. to H1.1 334) 210.001 LG3 1-42.891 0.001 0.011 0.001-16.081 -0.131 Chapter H - Compressive force with single/major axis bending - acc. to 1­11.3 Cross-s " on ffo�pp 2-RR0200x100x&3 0� " LG31-27.891 0.001 5.501 0.001 -9.841 -0.051 102) Chapter E - Compre�ve strength aoo. to E3 0.001 LCa1 1-26.551 0.001 5.491 Chapter F - Yielding - Bending about y-axis acc. to F2 - F12 `1 0.001 -9.841 -0.051 111) 0.00 , LG1 -26.551 0.001 6.491 `oceI of does F7 0.001 -9.841 -0.051 126) Chapter F - buckling HSS section not apply - ace. to 60.001 LG3 1-17.34) 0.091 7.041 0.001 -5.731 0.051 160) Chapter G - Nominal shear strength m z axis - acc. to G2 (G4,G$) - Unstiffened web 0.001, LG3 '1-27.891 0,001 5.501 0.001 -9.841 -0.051 301) Chapter E - Flexural buckling about -axls acc. to E3 0.00 LG3 1 27.89� 0.001 5.501 0.001 9.841 -0.051 311) F Chapter E - Flexural buckling about z-axis ace. to E3 O.00I LG3 1-27.891 0.001 5.501 0.001 -9.841 -0.051 321) E Chapter - orsional budding acc. to E4 0.001 LG3 I-27.891 0.001 5.501 0.001 -9.841 -0.051 332) Chapter H -Single axis /or biaxial/ flexure with axial compressive force - acc. to H1.1 0.001 LG3 1,-27.891 0.001 5.501 0.001 -9.841 -0.051 334) Chapter H -'Compressive force with single/major axis bending - aoc., to 1­11.3 76 Eros 20.00 G5 SI-.QR0103 271 -0.081 1.231 0.001 0.031 0.001 100) Negligible internal forces 10,001 LG1 , 1 9.311 0.051 3.471 0.001 0.001 -0.021 101) Chapter D -:Tensile strength ace. to D2 RFEM 4.10.2680 - Arbitrary 3D Structures solved using FEM www.diubal.com t Josef Gartner GmbH Page: 50/54 Gartnerstra[3e 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: W073/84.2100 RF-STEEL AISC Project:,,'C2 <. Structure: BenchnnarkGestell-V3Dowei I Date: 08/OZ/2013 Member ; I oc x ,;Load Forces tkN] N Vy Vz, MT Moments [kNm] My Mz Acc. to Formula _ 0.00 LG4 -20.57 0.03 -3.54 0.001 0.34 -0,02 102) Chapter E - Compressive strength acc. to E3 O.00i LG3 I 8.61 I 0.06� 3.481 0.001 -0.34I -0.02I 111) Chapter F - Yielding - Bending about y-axis acc.. to 2 - F12 0.001 LG7 I 9.31 0.061 3.471 0.001 -0.341 -0.021 126) Chapter F -Local budding of HSS section does not apply - acc. to F7 20.001 LG4 1-17.221 0.021 -3.661 0.001 -0.051 -0.021 160) Chapter G - Nominal shear strength inz-axis - ace. to G2 (G4,135) - Unstiffened web 0.00� LG4-20.571 0.03� 3.541 0.001 0.34� -0.02� 301) Chapter E -Flexural buckling about -axis acc. to E3 0.001 LG4 1-20.57� 0.031 -3.541 0.001 0.341 -0.021 311) Chapter E - Flexural buckling about z axis am to E3 0.001 LG4 -20.57 ( 0.031 3.54 0.00 0.34 0.021 321) Chapter E - Torsional buckling aoc. to E4 r' 0.001:. LG4 j' -20.571 0.031 3.541 0.001 0.341 -0.021 332) lhap-1 0.001 LGIgsyor bia3flixure with exist compressive force - aO H1.1 lt�I I -0.34 -0.02 333) Chapter H -Single axis /or biaxial/ flexure with tensile force - acc. to H1.2 0401 LG4 1:-20.571 0.031 -3.541 0.001 0.341 -0.021 334) .Chapter H --Compressive force with single/major axis bending - acc. to H1.3 Ti C' n t1p, 6:QRO 1t10x4 0 LC,5 -1.26I -0.101 1.31 0.001 -0.05I -0.01 100) Negligible,intemal forces WWI LG2 10.041 -0.051 3.491 0.001 -0.311 -0.021 101) Chapter Tensile�2 30.001 LG3 21 181 -0.061 3.801 0.001 0.331 -0.021 102) Chapter E - Compressive strength acc. to E3 40.00I LG3 1-24.701 -0.051 3.691 0.001 0.351 -0.02I 111) Chapter F =Yielding = Bending about y axis acc. to F2 - F72 10.001 LG1 I-13.03-0.081 4.021 0.001 0.291 -0.031 126) Chapter F -Local buckling of HSS section does not apply - acc. o F7 0.00 LG3 1-13.74I -0.061 4.031 ",trial in 0.001 -0.111 -0.031 160) Chapter G - shear strength z-axis - ace. to G2 (G4 G5) - Unstiffened web 30.00 LG3 I -21.18 -0.061 3.801 0.001 0.331 -0.021 301) Chapter E - Flexural buckling about -axis acc. to E3 30.001 LG3 1-21.18� -0.061 3.801 0.001 0.331 -0.021 311) Chapter _Flexural abo-21.118i cis ace.-0t luckling 30.001 06I 3.801 0.001 0.331 -0.02I 321) Chapter - orsional buckling acc. to E4 40.001 LG3 i"-24.701 -0.051 3.691 0.001 0.351 -0.021 332) Chapter H - Single axis /or biaxiall flexure with axial compressive force - ace. to H1.1 40.001 LG2 1 11.581 .0.041 -3.351 0.001 -0.331 -0.021 333) Chapter H - Single axis /or biaxial/ flexure with tensile force - sec. to H1.2 40.001 LG3 1, -24.701 -0.051 3.691 0.001 0.351 -0.021 334) r Chapter H -.Compressive fome,with single/major"a bending - am to H1.3 ?38 Cibasa�eCllonLNo til QR0100 31 -0.071 1.311 0.001 0.051 0.001 100) Negligible internal forces 10.00 LG1 1' 6.1611 0.071 3.761 Chapter D'-Tensile to D2 0.001 0.071 -0.031 101) strength ace. 0.061 LG4 1-13.75� 0.041 -3.761 0.001 0.301 -0.021 102) Chapter E - Compressive strength acc. to E3 0.00 LG3 1 5.461 0.081 3.771 0.001 -0.311 -0.021 111) Chapter F -Yielding -Bending about y-axis acc. to F2 - F12 0.00I LG1 1 6.16� 0.081 3.761 0.001 .0.311 -0.021 126) Chapter F -Local buckling of HSS section does not apply - ace. to F7 10.001 LG3 1 5.46� 0.061 3.761 0.001 0.071 -0.031 160) Chapter G-Nominal shear strength m z-axis - aoc. to G2 (G4,G5) - Unstiffened web 0.00 LG4 1-13.75I 0.041 3.761 E lexuralb is to E3 0.001 0.301 -0.021 301) Chapter - uckling about ace. 0.001 LG4` j -13.76 ' 0.041 3.761 0.001 0.301 -0.021 311) axisacc0.041 Chapter00T �a1:b1ucklingabou51 3.761 0.001 0.301 -0.021 321) Chapter E - Torsional buckling acc. to E4 0.001 LG4 1 -13.751 0.041 3.76I 0.001 0.301 -0.02I 332) Chapter H .- Single axis for biaxraU flexure with axial compressive force - acc. to H1.1 0.001 LG1 J 6,161 0.081 3.761 0.001 -0.311 -0.02i 333) Chapter H - Single axis /or biaxial/ flexure with tensile force - ace. to H1.2 0:001 LG4 I-13.751 0.041 -3.761 0.001 0.301 -0.021 334) s Chapter H -'Compressive force with single/major axis bending - ace. to H1.3 80 Croas s onAo: 2 = RRO 200x100x6.3 29.29 LG5 1 0.481 0.061 2.861 -0.031 0.631 -0.031 100) g, Negligible internal forces 156.191 LG2 1 ' 20.751 0.031-11.361 0.001 -15.581 -0.171 101) Chapter D:-Tensile strength ace. to D2 205.001 LG1 j 7.17 -0.341 12.581 0.001 23.321 -0.111 111) Chapter F -Yielding - Bending about y-axis sec. to F2 - F12 0.001 LG1 I' -7.66I 0.161 8.051 0.001 -2.351 -0.081 126) Chapter F - Local budding of HSS section does not apply - sec. to F7 205.001 LG3 I 6.571 -0.281 12.641 0.001 23.311 -0.111 160) Chapter G - Nominal shear strength in z-axis - aoc. to G2 (G4,G } - Unstiffened web 20 0.001 22.731 -0.161 333) CliapterHISingGe axislor biaxvBU flexure with tensiile force aw to H1.2 ®. RFEM 4.10.26eo •Arbitrary 3D Structures solved using FEM www.diubal.com r Josef Gartner GmbH Page: 51/54 Gartnerstralle 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 RF-STEEL AISC Project:,.'A Structure: SanchrYairkGosie'll-WDowel Date: 08/02/2013 it GOVERNING INTERNAL FORCES BY MEMBER Nie/npe a] oc x Load Foroes,[kN] Moments ]kNm] Ace. to Na jc Casa : ; N Vy V= MT - My Mz Formula s 81$ Giros =' o NNo i x.0x6;3 .00 nLG1') 16.09� 19.931 10.021 0.001 0.001 0.001 101) Chapter D - ensile strength aoc. to 2 , 15.801 LG2 1;-16:041 31.591 8.021, 0.001 1.271 5.001 102) 4 Chapter E,- Compressive sirenh ace. to E3 111) 15.80 ( LG3 { T6.08 { 21.25 � 10.061 0.001 -1.591 3.351 sk Chapter F -Yielding - Bending about y-axis acc. to 2 - F12 r 15.801 11312 { -16.041 31.591 8.021 0.001 : 1.271 -5.001 112) Chapter F=;Yleidmg - Sending about z axis ace. to 2- F12 7.90 LG1 16.091-19.961-10.021 0.001 -0.791 1.581 126) Chapter F - Local bu ling of HSS section does not apply - ace. to F7 15.80{ 1132; '-16.04{ 31.591 8.02{ -0.001 1.271 -5.00{ 146) Chapter F = Local bu ing of HSS section due moment about minor axis - ace. to F7 0.001 LG3 1 16.08-21.211 10,061 0.001 0.001 0.001 160) Ek Chapter G - Nominal shear strength n z-axis - acc. to G2 (G4,G5) - Unstiffened 0.001•- ;1 ;-16.021 31.651 8.021 web 0.001 0.001 0.001 161) ,LG2 Chapter G 'Nominal shear strength m y-axis - acc. to G7 (G4,G5) - Unstiffened web 15.801 LG2 1-16.041 31.591 8.021 0.001 1171 5.001 301) N ' Chapter E - Flexural buckling about s acc. to E3 15;80 LG2, {= -16.04 31.591 8.021 0.001 1:271 5.001 311) Chapter E;-, lexural buckling about z-axis:acc. to E3 15.801 LG2 1-16.041 31.591 8.021 0.001 1.271 5.001 321) Chapter E - Torsional buckling ace. to E4 15.801 LG2,: I-16;041 31.591 8.021 0.001 1.271 -5.001 332) Chapt15.801 i glC�e�axls/or biaxas xure withaxial compressive force - aced H1:1 } I 1.59{ 3.351 333) Chapter H -Single axis /or biaxial/ flexure with tensile force - acc. to H1.2 7901 LG2 1-16.031 31.631 8.021 0.001 0.631 -2.501 335) Chapterfi Compressive torte with singte/minor axis.bending - acc. to H1.3 Y? � Cross seG n t+lm 3 QR0 60x4 296.26 LG3 1 35.171 0.001 -0.041 0.001 0.001 0.001 101) „� Chapter D - ensile strength acc. to 2 0001, . L132 1-43:391 0.001 0.101 0.001 0.001 0.001 102) , Chapterf-'Com�essive strength ace. to E3 0.001 0.081 0.041 111) 126.971 LG5 1 7.481 -0.01 I 0.021 Chapter F ielding Bending about ace. to 2 - F12 - - y-axis 84 65]- LG2, 1,-43.331 0.001 0.051: 0.001 0.061 0.001 126) s; Chapter F - Local buckling of HSS section does not apply - aoc. to F7 r 0.00L LG2 1-43.391 0,001 0.101 0,001 0.001 0.001 301) t Chapter E -Flexural buckling about -axis ace. to E3 0.001 ; LG2. 1 -43 391 0.001 0.101 0.001 0.001 0.001 311) fi } Chapter E - Fiexuralbudding about z -axis am to E3 0.001 LG2 1-43.391 0.001 0.101 0.001 0.001 0.001 321) Chapter E - orsional buckling act. to E4 126971, LG2, -43 291 0.001 0.021 0.001 0.081 0.001 332) ' Chapter H,=;Single axis°tor biaxialt flexure with axial compressive force - act: to H1.1 169.291 LG5 7.501 0.01[ -0.021 0.001 0.081 0.041 333) A W MR Chapter H - Single axis /or biaxial/ flexure with tensile force - ace. to H1.2 126:97{ LG2,, {-43:291 0.001 0.021 0.001_ 0.081 0.001 334) i Chapter H 'Compressive force with single/major axis bending - act. to H1`.3 f $T ` Cross ono. 9 RR0 200x100x6.3 1.07) 10.08 { 144.20 L 1 8.95 Bending to 2 F12 0,041 16.131 9.821 111) Chapter F - fielding - about y-axis ace. - 144,201, LG1, 1 -0.641 9.311-10.041 0.041 -16.071 10.611 112) NE, chapter F==xieldipg - Bending about z axis act. to F2 - F12 0.001 LG1 I -0.551 9.791-10.051 HSS does F7 0.001 -1.581 3.151 126) Chapter F -Local budding of section not apply -ace. o 144:20II LG1 0.641- 9.311'-10.041 ' 0.041 16.071-10.611 146) Chapter F.= Local.buc dh of HSS section due moment about minor axis - sec. to F7 0.001 LG3 1.001 9.311 10.081 0.00 1.59 3.351 160) Chapter G - Nominal shear strength in z-axis - aoc. to G2 (G4,G5) - Unstiffened web 0.001 LG1 ' 1'-0.55,1 9.791-10,051 0.001 -1.581 3.151 161) Chapter.G.--Nominaf shear strength in y-axis - ace.. to G7 (G4.G5) - Unstiffened web s 144 201 LG1 064 9.311-10.041 0.041 -16.071-10.611 331) Chapter H Biaxial bending without axial forces - ace. to H1.1 �86 CYossrsee on No' 4 �' RRt) 200x100x6.3 10.13 LG5 0.381 3.941 0.001 0.351 -0.011 100) 1 -0,091 Negligible•interrial fors 91.20) LG2 1-17.691 -0.051-13.631 0,001 -11.511 -0.081 102) Chapter E - Compressive strength acc. to E3 -0.081 91.201 LG2 1:-17.691 -0.051-13.631 Chapter F > Yfeldfng - Bending about y-axis acc. to F2 - F12 0.001 -11.511 111) 10.131 LG1 1 0.691 0.02, 12.391 F buckling HSS does acc. to F7 0.001 1.201 -0.051 126) Chapter -Local of section not apply - 91101 1G2 1r-17:691 -0.051-13.631 0.001 : -11.511 -0.081 160) Chapter G, Nominal shear Wenin z-axis -ace: to G2 (G4,G5) - Unstiffened web 91.201 LG2 1 691 0.001 -11.511 -0.081 301) 1 i ar s ( -0.051-13.631 Chapter E - Flexural buckling about axis ace. to E3 91.201_=LG2; 1:-17[69� -0.051'-13,631. 0.001 -11511 -0.081 311) i c Chapter E - lexuraftiucWing about z-axis acc. to E3 91.201 L02 1-17.691 -0.051-13.631 0.001 -11.511 -0.081 321) Chapter E - Torsional buckling acc. to E4 A 9120,1 LG2 i--17.691 -m051-13.631 0.001 -11.511 -0.081 332) Ctispter H -,Single arcs /or biaxial/ flexure with axial compressive force -ace. to H1.1 IN ggg i RFEM 4.10.2680 - ArbRrary 3D Structures solved using FEM www.diubal.com r Josef Gartner GmbH Page: 52/54 Gartnerstra& 20, 89423 GUNDELFINGEN Sheet: 1 Tel: 09073/84-0 - Fax: 09073/84-2100 RF-STEEL AISC Project: Structure: BenchmarkGestelt-V3Dowrei I Date: 08/02/2013 1u18t+tber �:'lAc x .. Load Forces [kNI Moments [kNm] Am. to 1Vo Case N Vy VZ MT My MZ Formula 91.201 LG2 1 -17,69 -0.05 -13.63 0.00 -11.51 -0.08 334) Chapter H - Compressive force with singletmajor axis bending - acc. to H1.3 88 omNo. 4 - RRO 200x100x6.3 189 12 LG4 24.231 -0.041 3.791 0.001 3.951 0.151 101) Cha268801 eLG1 strength -56.8512 0,141 1.591 0.001 13.801 0.311 102) Chapter E -Compressive strength ace. to E3 258.801 . LG1 -1 .56.86 0.141 1.591 0.001 13.801 0,311 111) Chapter F - retding Bending about y axis ax. to F2 - F12 0.00 LG1 1-27.211 -0,021 -2.951 �ocal 0.001 11.341 -0.101 126) Chapter F - budding of HSS section does not apply - sec. to F7 160) Chapter0.001 G INomGin 1 hear str ngth in z axis acc to G2 (G4 G�) - Unstiffenedf web -11.511 -0.041 268.801 LG1. 1-56.851 0.141 1.591 0.001 13.801 0.311 301) x Chapter E - Flexural budding about -axis sec. to E3 258.801: LGt -1-56.85� 0,141 1.691 0.001 13.801 0.311 311) Chapter E � Flexural budding about z axis aoc. to E3 258.801 LG1 1 -56.85 0.141 1.591 0.001 13.801 0.311 321) Chapter E - Torsional budding acc. to E4 258.801 LG1 '!-56.851 _ 0.141 1.591 0.001 13.801 0.311 332) liapter H =:Single axis /or biaziaU flexure with axial compressive force - ace. to H1.1 0.001 LG2 1 16.871 -0.011 7.541 0.001 -11.511 -0.041 333) Chapter H - Single axis /or biaxial/ flexure with tensile force - acc. to H1.2 258.801 LG1 1-56.851 0.141 1.591 0.001 13.801 0.311 334) Chapter H =Compressive force with single/major axis bending - acc. to H1.3 90 Cros50.001 s4ection G41'I'RRtl200.7OOx6.3 14.481 23.161 0.001 0.001 0.001 101) Chapter D - Tensile strength acc. to 2 0.0011 LnG3 1 `18.551 0.031 11.131-22.081 102) n11�6.611 .toE3�.661 Ch a 0.00II LG4 1 15.651 14.661 23.181 Yiaiding F2 F12 0.011 -13.901 8.741 111) Chapter F - -Bending about y-axis aoc. to - 0.00 LG1 -15.58�-40,311 -18.651 0,031 11.191-24.291 112) .I Chapter F -Bending about z-axis acc. to P2 - F12 -aiding 0.001 LG1 I-15.58)-40.311-18.651 0.031 11.191-24.291 126) Chapter F - Local buckling of HSS section does not apply - acc. to F7 0.001 LGII .I-15.581-40.3'11-18.651 Chapter F�={.ocal buckling HSS due 0,031 to F7 11.191 24.291 146) of section moment about minor 0.001 LG4 1 15.65j 14.661 23.181 Chapter G - Nominal shear strength m z-axis - ace. to G2 (G4,G5) axis - acc. 0.011 - Unstiffened web -13.901 8.741 160) 60.00[ LG1 (-:-15.30� 40.611-18.661 0.001 0.001 0.001 161) Chapter O -'Nominal shear strength in y-axis - acc. to G7 (G4,G5) - Unstiffened web 0.00� LG 1-15.611-36.661-18.551 0.031 11.131-22.081 301) Chapter E - lexural budding about axis sec. to E3 0.001 LG 1-15.611-36.661-18.651 0.031 11.131-22.081 311) Chapter E ,'Flexural budding about z is acc. to E3 0.001 LG3 1 -15.61 36.661-18,551 0.031 11.131-22.081 321) r Chapter E -Torsional budding acc. to E4 0.00 LG5 '[ -5.231-24.861-14.511 -Blaxial forces'- 0.021 8.741-14.981 331) Chapter Hbending out axial acc. to H1.1 0.001 LG1 1-15.581-40.311-18.651 0.031 11.191-24.291 332) Chapter H -Single axis /or biaxdal/ flexure with axial compressive force - acc. to H1.1 0.001 LG4 1_ 15.651 14.661 23.181 0.011 -13.901 8.741 333) A. ChapterH - Single axis /or biaxtal/fiexure with tensile force;- acc. to 1­11.2 PARTS LIST BY MEMBER t3arl� CrossSedion"Description Number Members Length [m] ot: Length Iml Surf. Area [m21 Volume [m31 Jnit Weighl [kg/m1 Weight [kgl ot. Weigh [t] 2 - RRO 200x100x6.3 2 2.05 4.10 2.37 0.01 27.63 56.65 0.113 -2 2-- RRO 200x100x6.3 4 0.26 1,00 0.58 0.00 27.63 6.91 0.028 3 ' 2- RRO 200x100x6.3 2 3.05 6.10 3.53 0.02 27.63 84.28 0.169 2 - RRO 200x100x63 2 2.10 4.20 2.43 0.01 27.63 58.03 0.116 5 1 -RRO 206x100x6.3 2 0.16 0.32 0.18 0.00 27.63 4.37 0.009 ., 3 - QRO 60x4 2 2.96 5.93 1.38 0.01 6.92 20.51 0.041 7 1 - RRO 200x100x6.3 2 1.44 2.88 1.67 0.01 27.63 39.85 0.080 $ 4 - RRO 200x100x6.3 2 0.91 1.82 1.05 0.01 27.63 25.20 0.050 9 4 - RRO 200x100x6.3 2 2.59 5.18 2.99 0.02 27.63 71.51 0.143 1,- RRO 200x100x6.3 2 0.60 1.20 0.69 0.00 27.63 16.1 0.033 5 - ORO t 00x4 4 0.20 0.80 0.31 0.00 11.93 2.39 0.010 12 5 - ORO 100x4 2 0.40 0.80 0.31 0.00 11.93 4.77 0.010 15 2 - RRO 200xl00x6.3 2 0.60 1.20 0.69 0.00 27.63 16.58 0.033 Vy -.:4d ... -Donv`! Q 7:)M 4 d7fl d7A 7d1 nni 77 R1 44R AS n4in ® 1 RFEM 4,10.2680 - Arbitrary 3D Structures solved using FEM www.diubal.com F Josef Gartner GmbH Page: 53154 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: I Tel: 0W73/84-0 - Fax: 09073/84-2100 GRAPHICS kpro—;rA Structure: BenchmarkGestell-V30owel Date: 08/02/2013 * RF-STEEL AISC - MEMBERS DESIGN RATIO, CAI RF-STEEL AISC CAI Members Design Ratio la 1.00 0.90 0.80 0.70 0.50 0.50 0.40 0.30 020 0.10 0.00 Mat : 014 Min : OAO Members Max Design Ratio: 0.74 Isometric 0. 1 8 ® RFEM 4.10.2680 - Arbitrary 313 Structures solved using FEM www.diubal.com