13080120CITY OF CUPERTINO BUILDING PERMIT
BUILDING ADDRESS: 19050 PRUNERIDGE AVE
CONTRACTOR: PERMASTEELISA
PERMIT NO: 13080120
NORTH AMERICA CORP
OWNER'S NAME: CAMPUS HOLDINGS INC
123 DAY HILL RD
DATE ISSUED: 08/15/2013
OWNER'S PHONE: 4089961010
WINDSOR, CT 06095
PHONE NO: (860) 298-2000
❑
JOB DESCRIPTION: RESIDENTIAL El COMMERCIALS
LICENSED CONTRACTOR'S DECLARATION
License Class Ci/'�n6 Lie. # ?/JrlO�
MOCK UP OF VERTICAL GLAZING AND SHADING
Contractor
CANOPY
I hereby affirm that I am licensed under the provisions of Chapter 9
(commencing with Section 7000) of Division 3 of the Business & Professions
Code and that my license is in full force and effect.
I hereby affirm under penalty of perjury one of the following two declarations:
lVirave and will maintain a certificate of consent to self -insure for Worker's
ompensation, as provided for by Section 3700 of the Labor Code, for the
Sq. Ft Floor Area:
Valuation: $10000
performance of the work for which this permit is issued.
I have and will maintain Worker's Compensation Insurance, as provided for by
Section 3700 of the Labor Code, for the performance of the work for which this
APN Number: 31606033.00
Occupancy Type:
permit is issued.
APPLICANT CERTIFICATION
I certify that I have read this application and state that the above information is
PERMIT EXPIRES IF WORK IS NOT STARTED
correct. I agree to comply with all city and county ordinances and state laws relating
WIT]]IINtOAYS OF PERMIT ISSUANCE OR
to building construction, and hereby authorize representatives of this city to enterupon
the above mentioned property for inspection purposes. (We) agree to save
180DMLAS ALLED INSPECTION.indemnify
and keep harmless the City of Cupertino against liabilities, judgments,
costs, and expenses which may accrue against said City in consequence of the
3granting
of this permit. Additionally, the applicant understands and will complyIssued
by: Date:
with all non -point source regulations per the Cupertino Municipal Code, Section
41
9.18.
laa
RE -ROOFS:
Q�
Signature Date J
All roofs shall be inspected prior to any roofing material being installed. If a roof is
installed without first obtaining an inspection, I agree to remove all new materials for
inspection.
❑ OWNER -BUILDER DECLARATION
Signature of Applicant: Date:
I hereby affirm that I am exempt from the Contractor's License Law for one of
the following two reasons:
ALL ROOF COVERINGS TO BE CLASS "A" OR BETTER
I, as owner of the property, or my employees with wages as their sole compensation,
will do the work, and the structure is not intended or offered for sale (Sec.7044,
Business & Professions Code)
I, as owner of the property, am exclusively contracting with licensed contractors to
HAZARDOUS MATERIALS DISCLOSURE
construct the project (Sec.7044, Business& Professions Code).
I have read the hazardous materials requirements under Chapter 6.95 of the
California Health & Safety Code, Sections 25505, 25533, and 25534. I will
I hereby affirm under penalty of perjury one of the following three
maintain compliance with the Cupertino Municipal Code, Chapter 9.12 and the
declarations:
Health & Safety Code, Section 25532(a) should I store or handle hazardous
I have and will maintain a Certificate of Consent to self -insure for Worker's
material. Additionally, should I use equipment or devices which emit hazardous
Compensation, as provided for by Section 3700 of the Labor Code, for the
air contaminants as defined by the Bay Area Air Quality Management District I
performance of the work for which this permit is issued.
will maintain compliance with the Cupertino Municipal Code, Chapter 9.12 and
I have and will maintain Worker's Compensation Insurance, as provided for by
the Health & Safety Code, Sections 25505 25533, a 5534.
Section 3700 of the Labor Code, for the performance of the work for which this
Owner or authorized agent: Date.
permit is issued.
I certify that in the performance of the work for which this permit is issued, I shall
not employ any person in any manner so as to become subject to the Worker's
Compensation laws of California. If, after making this certificate of exemption, I
CONSTRUCTION LENDING AGENCY
become subject to the Worker's Compensation provisions of the Labor Code, I must
I hereby affirm that there is a construction lending agency for the performance of
forthwith comply with such provisions or this permit shall be deemed revoked.
work's for which this permit is issued (Sec. 3097, Civ C.)
Lender's Name
APPLICANT CERTIFICATION
Lender's Address
I certify that I have read this application and state that the above information is
correct. I agree to comply with all city and county ordinances and state laws relating
to building construction, and hereby authorize representatives of this city to enter
upon the above mentioned_ property for inspection purposes. (We) agree to save
indemnify and keep harmless the City of Cupertino against liabilities, judgments,
ARCHITECT'S DECLARATION
costs, and expenses which may accrue against said City in consequence of the
I understand my plans shall be used as public records.
granting of this permit. Additionally, the applicant understands and will comply
with all non -point source regulations per the Cupertino Municipal Code, Section
Licensed Professional
9.18.
Signature Date
CUPERTINO
CONSTRUCTION PERMIT APPLICATION
COMMUNITY DEVELOPMENT DEPARTMENT • BUILDING DIVISION
10300 TORRE AVENUE • CUPERTINO, CA 95014-3255
(408) 777-3228 • FAX (408) 777-3333 • building(a)cupertino.org
n NF.W C ONSTRI ICTiON n ADDITION n ALTERATION / Ti n REVISION / DEFERRED ORIGINAL PERMIT #
PROJECTADDRESS � o s� ,Q� � I j' n .D /� f,
/,. yjr
APN #�.
OWNERNAME Qfp jg
PHONE ,O� n� /O/O
7Q
E-MAIL
STREET ADDRESS/ TAJF(/ v ! T6 1-60 ]A
r
c -T , �(y
,/ ^ a L bl
wPHONE "+ 7 (,,%,J'I'
FAX
CONTACT 3 E
b- G� C� L&,&
l P o (� 3
M IL
tG �- PERm,9sr 1 sA�Ro��,
STREET ADDRESS
s7r6&7
Cl Y, fr P
�� /�
FAX
1e k
I r�
❑ OWNER ❑ OWNER -BUILDER ❑ OWNERAGENT CONTRACTOR ❑ CONTRACTOR AGENT ❑ ARCHITECT ❑ ENGINEER ❑ DEVELOPER ❑ TENANT
CONTRACFORNAI�
LICE SE1Mq�L R
L]�E[�SE YPE
BUS. LIC#
COjA`/rrJ .�NA
•{/1+�Cf�GR"lit S�V���/1C�1�vU�.W
FAX
STREET ADDRESS
/
C S P �I / o
Le- b
PNE�� 3
ARCHITECT/ENGINEER NAME
LICENSE NUMBER
BUS. LIC #
COMPANY NAME
E-MAIL
FAX
STREET ADDRESS
CITY, STATE, ZIP
PHONE
AA
DESCRIPTION OF WORK D pe, v/ or —
EXISTING USE
PROPOSED USE CONSTR
TYPE
# STORIES
1
USE
TYPE
OCC.
SQ.FT.
VALUATION ($)
EXISTG
NEW FLOOR
DEMO
TOTAL
AREA
AREA
AREA
NErAREA
BATHROOM
KITCHEN
OTHER
REMODEL AREA
REMODEL AREA
REMODEL AREA
PORCH AREA
DECK AREA
TOTAL DECK/PORCH AREA
GARAGE AREA: DETACH
[]ATTACH
i
#DWELLING UNITS:
IS ASECOND UNIT ❑YES
SECONDSTORY ❑YES
t/
BEING ADDED? []NO
ADDITION? []NO
PRE -APPLICATION ❑ YES IF YES, PROVIDE COPY OF
IS THE BLDG AN ❑ YES
iREC VE $Y
Prty�
_,�!
VALUATION:
PLANNING APPL # []NO PLANNING APPROVAL LETTER
EICHLER HOME? ❑ NO
By my signature below, I certify to each of the following: I am the property owner or ayt ore agent to act on the property owner's behalf. I have read this
application and the information I have provided is correct. I have read the Description f r nd verify it is accurate. I agree to comply with all applicable local
ordinances and state laws relating to buildin t lion. I auth ' e representatives of rtino to enter the above -identified pr perty for inspection purposes.
Signature of Applicant/Agent: Date: �� /211
SUPPLEMENTAL INFORMATION REQUIRED
x i a>
` iozimuy fI
cicl YPE
4k. s%1P n,
New SFD or Multifamily dwellings: Apply for demolition permit for
€ +rt r
T /yOUNTERa�
ry }
❑iiBUILDINGPLAN�REVIESj aI a
M14,
existing building(s). Demolition permit is required prior to issuance of buildm
eptt JW f41)
I stFxs I�
permit for new building.
ExPREss fi{
x
❑ rLArININcrLnrritEyiEw *r
'
"®
Commercial Bldgs: Provide a completed Hazardous Materials Disclosure
❑` sTAxDnRn
PUBLicwoRxs fi
_
form if any Hazardous Materials are being used as part of this project.
OR, §
(] �LARGEP =,
1 rT y� #
r
❑;FIRE DEPT
Copy of Planning Approval Letter or Meeting with Planning prior to
❑ SANrrARYSEwERDISTRICT
submittal Of Building Permit application.
MAJOR
*;. , ,
m r
❑ EN VHtONMENTAL'HEALTH ,{_= .. ;�.'�
Tr7
BldgApp_2011.doc revised 06/2III ]
CITY OF CUPERTINO
FEW FEE ESTIMATOR — BUILDING DIVISION
19050 Pruneridge Ave
DATE: 08/15/2013
REVIEWED BY: Sean
lialADDRESS:
APN:
BP#:
"VALUATION:
$10,000
PERMIT TYPE: Building Permit
PLAN CHECK TYPE: Alteration / Addition / Repair
PRIMARY
USE: Commercial Building
PENTAMATION
PERMIT TYPE: 1GENCOC;
WORK
Mock -Up of vertical glazing and shading canopy.
SCOPE
1'1'11111'1'1�1-N:: " Elm
:tech. flan ('17eck
kfech_ Permit Fee:
Other ;llech. Insp.
Phimb. Plan ('peek
Plumb. Permit Fee:
Other Plumb Insp.
Elec. Plan (.heck
Elec. Permit Fee:
Other flee. Insp.
Tech. Insp_ Fee: I Plumb. Insp. Fee: I h1ec. Insp. Fee:
NOTE: This estimate does not include fees due to other Departments (Le. Planninz. Public Works. Fire, Sanitary Sewer District, School
rlictrint ntn 1 Thom fnoc pro hncod nn tho nroliminnru mfnrmntinn availnhlo and pro nnly nn octimato_ Cowart tho Dont fnr addn'I inin_
FEE ITEMS (Fee Resolution 11-053 Eff 711112)
FEE
QTY/FEE
MISC ITEMS
Plan Check Fee: Hourly Only? ® Yes Q No
$0.00
0 hours Plan Check, Hourly
$139.00 1STPLNCK
Suppl. PC Fee: Reg. ®OT
0.0
hrs
$0.00
PME Plan Check:
$0.00
Permit Fee: Hourly Only? 0 Yes Q No
$0.00
Suppl. Insp. Fee-.0 Reg. ® OT
0 0
hrs
$0.00
PME Unit Fee:
$0.00
PME Permit Fee:
$0.00
Construction Tax:
A.clrninistrative .h7ee:
0
Work Without Permit? ® Yes (E) No
$0.00
Advanced Planning Fee.
$0.00
hours Inspections
$278.00 ISTINSP 7 Inspection, Hourly
0
Travel Documentation Fees:
Strong Motion Fee:
IBSEISMICO
$2.10
Select an Administrative Item
Bldg Stds Commission Fee: IBCBSC
$1.00
$3.10
$417.00
$420.10
Revised: 07/01 /2013
w
in
I
M
pt
ol
`
�: ���� /
/
\�\�
� � \
/�
° �
/�
\
��
.
.
<`
y
�
Detail 2 — Prototype detail site logistics plan
Benchmark frame:
Scale 1:20
Lifting beam for lifting in the glass pane \
attached" the sane hook
e..,.n..H1rx.9`anee
Shackle S/6' (SWL 3.25to)
305
[iT4'Me"1
I+7
Wing strap for liPong Lilting strap for lifting
the glass pane —� the glass pane,
I
xssw N•
W`_ Glass supportl (4"xiNk) to
_ prev. contact glass -frame .�'.
-....._._,. (glued wframe at same
.. - '"
Position as #t bottom side) - rises, support (4"x1}'rk) to
_
pre'. contact glass - frame
- I
I
Glass support Glass support I4'x1)'xjlg") "-..__ Glass support 300
300
(B x1}'�') ... -�'.� to prev.,canted gtass - frame (6"x1p)") j11"/,il
I
bkS BSMfN'
11130
_ _ \ DETAIL "C"
10e0 \
xss
ss400'N 24U
DETA"
DETAIL "A":
Scale 1:2
203
Is"
`DETAIL "B"
DETAIL "C":
Scale 1:5
1 no. steel frame to be fabricated
Material: S355
Coating: RAL 7024 (dark grey)
DETAIL "B":
II
Dart
—
= ,
I_L_
1_i
Scale 1:2
—
1
I
I
I
I
I I i
Shcwn sealed
\ �\
i
1-1
-
I
{
!
I
I
HS6evIrIN
I
Installation sequence
Poshloning of the glass frame and fixing to the ground by 1 Ono. HILTI
— _.
__ —
Kvnk hdl TZ 112"xT
• Lnlg of the glass pane (weight -21 Wkg) off the transport rack by
the use of 2 suitable lilting straps suspended to a lifting beam
attached to the crane hook
_
- Lowering the glass pe"' inside the lateral tidlannel and positioning
II.,
-
- Installations oftheellatteral shims for positioning of the glass pane
I
g ^ I
I
1. l
Step 2:
Block for positioning
Of temporary canopy
31a' x 1314"
ti—
m
aFiiro
5
I xss ewnn•
Iz 20
116
g
°�14
3/8'
-I
20
Edge of glass pane
—
Glass shim
III
I
1 F
L
CUPERTIN
- _- LPongetrap
Building Depatne
t
4, Edge protedion
I Edge of glass pa-
S 2013
-- ---------
REVIEVti�E>) FQ
-----------------
C
E GOMPTU
— ------ —
cE------
---
Reviewed By^°
340
p
- S HIS--
---- ----—br--------- — ----------------
i
-------------------- — — -- ---— — — — -----
-- — — —------------- -- — —
I-----------N9etxknlN• I
A
C
- installation of the top profile
- Inetah= of Me lateral shims fi
of the glass pane
- Sealing of the gaps around the {
x 4no. HILTI Kwik bole TZ 1/2' x 7"
MguR$2013
03 m.0$t3 213a to rea Revision —rding l implementation In the field
IkamN
0m.or.k zus Rewoneomftvw_ _F�Pl W.M(1.ar. alM&M13)
2 I(etra
01 os.06.1324'15 RevLvo —dingcamanls FFP;0mensloncanpedbirh
awn 23.OS.t3I135
v00 e. xdtrx "P�
DESCRIPTION
IIIII GARTNER
1mM G"Mw GmaH V �� �� n �>nakmNwmniwnan n.
u swlawae"Mwemwr
DawaaWn'ron +Iu�wunwY.'�h.
Apple Campus 2 Project Cupertino, CA
Vertical Facade &
Shading Canopy 08.02A
FOSTER +PARTNERS
Benchmark glass pane - Inner radius
Steel frame for glass pane - overview+ details
71 mo cr 1:20; 1:5; 1:2 sent 212190776 w
k
k
212190776 Apple Campus 2Project; Cupertino CA
08.02A Vertical Glazing and Shading Canopy
Foster + Partners
Structural Report
Apple Campus 2 Project; Cupertino CA
08.02A Vertical Glazing/Shading Canopy
Foster + Partners
Benchmark Mockup
Report Name:
Project Number:
Document Name:
Status:
Revision:
Date:
Author:
Vertical Glazing
212190776
212190776-ST-MOBM-0001-Rev00.doc
00
August 05, 2013
Harald Elbert
Structural Department I Josef Gartner GmbH
Josef Gartner USA
A division of Permasteelisa North America Corp.
321 North Clark Street, Suite 2410
Chicago, IL 60654
Tel.: +1 (847) 225 8133 1 Fax: +1
(847) 225 7881
GARTNER
Q�pFE55ipN��
R.cc
UJ
,C721
�OF CAUF�
August 5, 2013
CUPERTINO
�.
60
Building Department
1 F AW 2013
REVIEWED FOR CODE COMPLIANCE
Reviewed By: rA, r lll�
Josef Gartner GmbH
GartnerstraBe 20
D-89423 Gundelringen
August 2013 Telefon +49 9073 84-0
Page 1 of 11 Telefax: +49 9073 84-2100
212190776 Apple Campus 2Project; Cupertino CA
08.02A Vertical Glazing and Shading Canopy
Foster + Partners
Josef Gartner GmbH
Gartnerstralle 20
D-89423 Gundelfingen I Germany
Fon: +49 9073 84 2228
Fax: +49 9073 84 1228
@: Harald.Elbert@Josef-Gartner.de
Josef Gartner USA
A division of Permasteelisa North America Corp.
321 North Clark Street, Suite 2410
Chicago, IL 60654
Tel.: +1 (847) 225 8133 1 Fax: +1
(847) 225 7881
August 2013
Page 2 of 11
GARTNER
Josef Gartner GmbH
GartnerstralIe 20
D-89423 Gundelfingen
Telefon +49 9073 84-0
Telefax: +49 9073 84-2100
GARTNER
212190776 Apple Campus 2Project; Cupertino CA
08.02A Vertical Glazing and Shading Canopy
Foster + Partners
Structural Report
1. Benchmark Mockup................................................................................. 4
1.1. Load assumption.................................................................................... 5
1.1.1. Dead Load........................................................................................... 5
1.1.2. Wind Load for vertical Glazing.................................................................. 5
1.1.3. Seismic Load........................................................................................ 6
1.1.4. Max Utilization of Steel Sections............................................................... 8
1.1.5. Max stresses in glass............................................................................. 9
1.1.6. Hilti Anchor Kwik Bolt TZ CS %2 (3 %)..................................................10
Josef Gartner USA
A division of Permasteelisa North America Corp.
321 North Clark Street, Suite 2410
Chicago, IL 60654
Tel.: +1 (847) 225 8133 1 Fax: +1
(847) 225 7881
August 2013
Page 3 of 11
Josef Gartner GmbH
GartnerstraBe 20
D-89423 Gundetfingen
Telefon +49 9073 84-0
Telefax: +49 9073 84-2100
L7
GARTNER
212190776 Apple Campus 2Project; Cupertino CA.g
08.02A Vertical Glazing ; and Shading Canopy
Foster + Partners
1. Benchmark Mockup
This document comprises the calculations of the Benchmark Mockup for
the project Apple Campus 2.
We assume that the Mockup will be installed only a few weeks!
lomelnc
Calculation will be done with RFEM4 Filename: BechnmarkGestell -V3 Dowel
See Appendix 1 212190776-ST-MOBM-AO01-REV00
Josef Gartner USA Josef Gartner GmbH
A division of Permasteelisa North America Corp. GartnerstralIe 20
321 North Clark Street, Suite 2410 D-89423 Gundelfingen
Chicago, IL 60654 August 2013 Telefon +49 9073 84-0
Tel.: +1 (847) 225 8133 1 Fax: +1 Page 4 of 11 Telefax: +49 9073 84-2100
(847) 225 7881
GARTNER
212190776 Apple Campus 2Project; Cupertino CA
08.02A Vertical Glazing and Shading Canopy
Foster + Partners
1.1. Load assumption
1.1.1. Dead Load
Aluminum:
Steel / Stainless Steel:
Glass:
y = 2700
kg/m3
= 169
pcf
y = 7850
kg/m3
= 490
pcf
y = 2500
kg/m3
= 156
pcf
Glass weight 25*0,025*10.8e3.5=23.625kN
Deadload of steel and glass will be calculated by Software RFEM4
1.1.2. Wind Load for vertical Glazing
Analysis assumes the maximum wind load used on the actual building facade
Reference: [ RCS 15 ] Josef Gartner - Structural Report - Design Criteria
Design pressures
Pressure Load
p =
1.05 kPa
21.9 psf
Suction Load
p =
-0.8 kPa
-16.7 psf
Josef Gartner USA
A division of Permasteelisa North America Corp.
321 North Clark Street, Suite 2410
Chicago, IL 60654
Tel.: +1 (847) 225 8133 1 Fax: +1
(847) 225 7881
Josef Gartner GmbH
GartnerstralSe 20
D-89423 Gundelfingen
August 2013 Telefon +49 9073 84-0
Page 5 of 11 Telefax: +49 9073 84-2100
IIIII GARTNER
212190776 Apple Campus 2Project; Cupertino CA
08.02A Vertical Glazing and; Shading Canopy
Foster + Partners
1.1.3. Seismic Load
Assumed Horizontal Seismic factor 0.65
Vertical Seismic will neglected
Horizontal seismic force:
Fp = 0.65 . Wp
Vertical seismic force:
Note: wind forces govern for the design of this structure. The design wind pressure is 2.7
times higher than the equivalent seismic load horizontal acceleration. (1.1 kPa ( wind) vs.
0.41 kPa (seismic- 0.65*25kPa*.025m) Plus, the wind is factored by 1.6 in the ULS
load cases while the seismic is not factored.
Josef Gartner USA
A division of Permasteelisa North America Corp.
321 North Clark Street, Suite 2410
Chicago, IL 606S4
Tel.: +1 (847) 225 8133 1 Fax: +1
(847) 225 7881
August 2013
Page 6 of 11
Josef Gartner GmbH
Gartnerstraf5e 20
D-89423 Gundelfingen
Telefon +49 9073 84-0
Telefax: +49 9073 84-2100
212190776 Apple Campus 2Project; Cupertino CA
08.02A Vertical Glazing and Shading Canopy
Foster + Partners
Applied loads
Will be calculated by software
LC2: Wind
Josef Gartner USA
A division of Perrnasteelisa North America Corp.
321 North Clark Street, Suite 2410
Chicago, IL 60654
Tel.: +1 (847) 225 8133 1 Fax: +1
(847) 225 7881
August 2013
Page 7 of 11
GARTNER
Isometric
Josef Gartner GmbH
GartnerstraMe 20
D-89423 Gundel ingen
Telefon +49 9073 84-0
Telefax: +49 9073 84-2100
212190776 Apple Campus 2Project; Cupertino CA
08.02A Vertical Glazing and Shading Canopy
Foster + Partners
Load case 3: Seismic in X
1.1.4. Max Utilization of Steel Sections
Extract of Appendix 1 212190776-ST-MOBM-A001-REV00
RF-STEEL AISC CAI
Members Design Ratio
t'1
1.00
0.90
0.80
0.70
0.50
0.50
0.40
0.30
0.20
0.10
0.00
Max:
0.74
Min:
0.00
Members Max Design Ratio: 0.74
Josef Gartner USA
A division of Permasteelisa North America Corp.
321 North Clark Street, Suite 2410
Chicago, IL 60654
Tel.: +1 (847) 225 8133 1 Fax: +1
(847) 225 7881
August 2013
Page 8 of 1 i
GARTNER
l F�.
Josef Gartner GmbH
Gartnerstrage 20
D-89423 Gundelfingen
Telefon +49 9073 84-0
Telefax: +49 9073 84-2100
11111 GARTNER
212190776 Apple Campus 2Project; Cupertino CA
08.02A Vertical Glazing and Shading Canopy
Foster + Partners
1.1.5._Max stresses in glass
Stress in glass
C01: LG7/P or LG2/P or LG3/P or LG4/P or LGS/P
surfaces sigma-1,+
Surfaces Max Sigma-1,+: 25.254, Min Sigma-1 +:-10.336 [N/mm2j
Values: Sigma-1,+ [N/mm2j
<30.3 N/mm2 see report 212190776-ST-VG-0001-RevOl
Additional safety factor included because stresses are based on LRFD calculation!
Josef Gartner USA
A division of Permasteelise North America Corp.
321 North Clark Street, Suite 2410
Chicago, IL 60654
Tel.: +1 (847) 225 8133 1 Fax: +1
(847) 225 7881
August 2013
Page 9 of 11
Isometric
Josef Gartner GmbH
Gartnerstrage 20
D-89423 Gundelfingen
Telefon +49 9073 84-0
Telefax: +49 9073 84-2100
GARTNER
212190776 Apple Campus 2Project; Cupertino CA
08.02A Vertical Glazing and Shading Canopy
Foster + Partners
1.1.6. Hilti Anchor Kwik Bolt TZ CS 1/ (3 %)
Design assumes 4 anchors per basepoint with spacing of 4.25" x 6.25" and maximum
uplift reaction forces from LG3 ( see Appendix)
ProBs Anchor2.4.1
C— wry. Pape: 1
Speeder. PRject
Ad*e$$. Sdd -.je* 1 P.. No.:
PN" 1 Fax: I Date- 8:5'2013
EbA
1 Input data
Altoita WW and diatwaar:
lJfe� erM/d -2 Wpth:
hsuedi Valid
Pl.*..
stff irkst
Andw PhDs:
Ptoae
Base material
Rekttattwrrot
Saisrdo loads (cat: C. D. E or F)
cibommy IL1 a W bL%1
Kwik Sot TZ -CS to (3 1/a)
hK-3150 im. h_=3.025 in ---- ��
Carbon S"
ESR-1017
5t112013 I WV2015
destn me8nd AO 3181AC103
ob -0.000 in. (m stardom: t-0.500 in
% x 4 x t-10.000 A x 8.000 in. x 0.500 m.: (Remmxrdad plate thidntess: M -I-Wed)
s shape (AISC} (L x w x T x FT) - 3.000 k. x 2.330 n x 0.170 in. x 028o M.
aadmd-4,a e.2500. V -2500 Ps[ h - 18A00 in.
tN1fiQIx *..Wm S. shear. O.IdI E - fupPWM ul el�lt M RWOIOM a pre
edge r* twmmt none Of 6 NO.4 bar
no
eaorro,vxew(<ram�am razes. n.-aaw awn hmner.esnustnsn.un awm.w.ewx.
Josef Gartner USA Josef Gartner GmbH
A division of Permasteelisa North America Corp. GartnerstraBe 20
321 North Clark Street, Suite 2410 D-89423 Gundelfingen
Chicago, IL 60654 August 2013 Telefon +49 9073 84-0
Tel.: +1 (847) 225 9133 1 Fax: +1 Page 10 of 11 Telefax: +49 9073 84-2100
(847) 225 7881
GARTNER
212190776 Apple Campus 2Project; Cupertino CA
08.O2A Vertical Glazing and Shading Canopy
Foster + Partners
wvrw.hil6.us
Profls Anchor 2.4.1
Company-,
Page: 2
Specifier
Project:
Address:
Sub -Project I Pos. No-:
Phone I Fax: [
Date: 8,5'2013
E-Mail:
2 Proof I Utilization (Governing Cases)
Design vakres Ob] Utilization
Loading Proof
Load Capacity f ,1%]
Status
Tension
478D 76 8 03I-
OK
Shear Steel Sf av*
1070 W2 -130
OK
Loading py fb �3 Utilization f wv v 1%) Status
Combinedtension and Shaw loads
3 Warnings
• Please consider all details and hiritsfwamings given in the detailed report!
Fastening meets the design criteria!
4 Remarks; Your Cooperation Duties
• Any and all information and data contained in the Software concern solely the use of Hilb products and are based on the principles, formulas and
security regulations in accordance with HRft technical directions and operating, mounting and assembly insvugons, etc., that must be sncdy
complied with by the user. All figures contained therein ate average figures, and therefore use -specific tests are to be conducted prior to using
the relevant Hilti product The results of the calculations carried out by means of the Software are based essentially on the data you put in.
Therefore, you bear the sole responsibility for the absence of errors, the compieseness and the relevance of the data to be put in by you.
Moreover. you bear sale rezponsibi ty for having the results of the calculation checked and cleared by an expert, par aculany with regard to
compliance with appiicisile norms and permits, prior to Ming them for your specific facility. The Software serves only as an aid to interpret norms
and permits without any Wmardee as to the absence of errors, the correctrhess and the relevance of the results or suitability for a specific
application.
• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software_ In particuiar, you must arrange for the
regular backup of programs and data and. if applicable, carry out the updates of the Software offered by Hilt on a regular basis. If you do not u se
the Autoupdate function of Ow Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case
by carrying out manual updates via the Hft Website- HIM wl not be liable for consequences, such as the recovery of lost or damaged data or
programs, arising from a culpable breach of duty by you.
Josef Gartner USA
A division of Permasteelisa North America Corp.
321 North Clark Street, Suite 2410
Chicago, IL 60654
Tel.: +1 (847) 225 8133 1 Fax: +1
(847) 225 7881
August 2013
Page 11 of 11
Josef Gartner GmbH
GartnerstraM 20
D-89423 Gundel ingen
Telefon +49 9073 84-0
Telefax: +49 9073 84-2100
Josef Gartner GmbH Page: 1/54
Gartnerstra& 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 COVER
Project A.0 Structure: BenchmarkGesie11-Mowel Date: 08/02/2013
STRUCTURAL ANALYSIS
PROJECT AC2 Apple Cmnpus 2
Benchmark Mockup
CLIENT Apple Inc.
lISA
CREATED BY Harald Elbert
Josd Gagner GmbH
® T RFEM 4.10.2880 - Arbitrary 31) Structures solved using FEM www.dlubal.com
Josef Gartner GmbH
Page:
2/54
GartnerstraMe 20, 89423 GUNDELFINGEN
Sheet:
1
Tel: 09073184.0 - Fax: 09073/84-2100
STRUCTURE
Protect
1CZ
Structure: Benchmarkl3esie11-WDowel Date: 08/02=13
CONTENTS
OCONTENTS
fracture
2
rap . L: L2 L 1+ L 3+ L
a
£
=;Nodes
2
Graph. Surfaces Sigma-1,+, LC2: Wind
17
L(ri
2
Graph. Deformations u, LG6: SLS DL+0,7
18
" =Materials
3
Wind
18
Surfaces
3
Results - Load Combinations
19
>
Nodal Supports
3
Nodes -Support Forces
19
Nodal Supports -Springs
3
Members - Deformations
19
Line Releases
3
Members - Internal Forces
21
Cross -sections
4
Cross -sections - Internal Forces
30
MemW Releases
4
Graph. Surfaces Sigma-1,+, C01: LG1/P or
40
{
Member Eccentricities
4
LG2/P or LG3/P or LG4/P or LG5/P
40
Members `
4
Graph. Surfaces Sigma-1,-, C01: LG1/P or
41
Graph :
Structure
5
LG2/P or LG3/P or LG4/P or LG5/P
41
Loads
6
RFSTEEL AISC
42
Load Cases
6
CAI - Design of steel members
42
`
' Settings;for non -linear analysis
7
according to AISC (LRFD or ASD)
42
f
LWind
C 2 -
7
General Data
42
Load groups
7
Details
42
Settings for non linear analysis
7
Materials
42
Loadcoinbittatlons"
7
Cross -Section
42
Results - Load Cases, Load Groups
a
Effective Lengths - Members
42
Results -: Summary
8
Design Parameters
43
Nodes - Support Forces
9
Results
44
I!, t
SO.lf-welght
LG1 1.2•LCt + 1.6"LC2
11
12
Design by Load Case
Governing Internal Forces by Member
44
44
<LG2:1.2•LCt-1.6'LC2
13
Parts List by Member
52
Graph
LG3: 0.VLCt + 1.6•LC2
14
Graph. RF-STEEL AISC - Members Design Ratio
53
%;Graph
. 1G4: 0.9'CC1= I.6'LC2
15
CAI
53
Cartesian
NODES
Reference
; " Cooriinats
Node coordinates
X .. Y ' x
t
Node Type,
Node .
System
X
[Cm]
Y (am] Z (cm)
Comment
Y
z
473
Standard
Cartesian
0.00
50.00
0.00
>34$
Standard
47
Cartesian
0.00
-160.00
0.00
r�r�
49'�
;Standartl:
-
Cartesian
0.00
-94.20
0.00
50
Standard
47
Cartesian
0.00
0.00
-350.00
Z
5t
Itandar
-
Cartesian
0.00
50.00
-258.80
52
Standard
Cartesian
0.00
94.20
0.00
53
Standard -:
47
Cartesian
0.00
60.00
0.00
SS
Standard
-
Cartesian
25.00
50.00
-350.00
56
Standard
Cartesian
1080.00
50.00
0.00
58,
_
Standard
Cartesian
25.00
60.00
0.00
a0
Standard
-
Cartesian
230.00
50.00
0.00
61
Standard
Cartesian
250.00
50.00
0.00
62
Standard
Cartesian
270.00
50.00
0.00
63
Standard
Cartesian
330.00
50.00
-350.00
87
.'Standard ...
Cartesian.
330.00
60.00
0.00
$$
Standard
Cartesian
540.00
50.00
-350.00
63
Standard
Cartesian
540.00
50.00
0.00
7t1
Standard
Cartesian
750.00
50.00
-350.00
74,
"Standard
Cartesian
750.00
50.00
0.00
75
Standard
Cartesian
810.00
50.00
0.00
76
Standar! -
Cartesian
830.00
50.00
0.00
77
Standard
-
Cartesian
850.00
50.00
0.00
;Standard
Cartesian
1055.00
50.00
-350.00
8a
_
Standard
Cartesian
1056.00
50.00
0.00
$$
Standard "'
56
Cartesian :
0.00
-160.00
0.00
84
Standard
Cartesian
1080.00
94.20
0.00
85
Standard .
56
Cartesian
0.00
0.00
-350.00
a 86
Standard
-
Cartesian
1080.00
50.00
-258.80
$7
Standard ' <
-
Cartesian
1080.00
94.20
0.00
"Standard
56
Cartesian
0.00
60.00
0.00
Line
in 1 ,
Une Type
Nodes No.
Line Length
1(cm]
<: 1
Polyline
59,60
205.00
X
.2 .:.
��PDlyline
81.56
25.00
X
3
Polyline
78,85
25.00
X
4 <a
Polyline '
70,78
305.00
X
5
Polyline
68,70
210.00
X
8
Poyline
63,68
210.00
X
7
Polyline
55,63
305.00
X
' Pot me
48,49
15.80
Y
�$
Polyline
49,51
296.26
YZ
50 "
" Poyline" _
49,47
144.20
Y
fit
Polyline
50,51
91.20
Z
52�
Polyline
51,47
258.80
Z
53
Polyline
47,53
60.00
Y
Pol"Poy
line
60,61
20.00
X
,Polyline
60,62
40.00
X
Polyline
61,62
20.00
X
® T RFEM 4.10.2680 - Arbitrary 3D Staetrres solved using FEM
www.dtubal.com
Josef Gartner GmbH Page: 3/54
11 GartnerstraU 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 STRUCTURE
IRV
Project AC2 Structure: BenchmarkGeste11-Moire[ Date: 08/02/2013
le LINES
;Ling Line Length
y FiP w: Wna,Type Nodes No. I gm] ,
83 Polyllne 62,67 60.00 X
68 Polyllne 50,55 25.00 X
l VPolyllne 67,74 420.00 X
+7 ' ; - ,Polyllne 74,76 60.00 X
r 7B"Po
lyllne 75,76 20.00 X
..Polyllne 77,75 40.00 X
78 Polyllne 76,77 2000.X
80 Polyllne 77,81 205.00 X
85 Polyllne 83,84 15.80 Y
86 _Polyllne 84,86 296.26 YZ
$7 Polyllne 84,56 144.20 Y
Polyllne 85,86 91.20 Z
Polyline 86,56 258.801 Z
t , ; Polyllne > 56,88 60.001 Y
MATERIALS
Marl Materiaf E-Modulus CrModulus Poisson's R. Sp. Weight Coefr. Thermal Sar factor
=Tio Description E [kN/crn I G [kN1crn2] µ [-] Y [kWm3j a [1/°C] 7M [-1
F 1 Steel S 355 i DIN 21000.00 8100.00 0.300 78.50 1.2000E-05 1.100
Material Model - Isotropic...
18800:1990-11
2 Fbat Glass I E DIN ENp13474 I 7000.00 2800.00 0.230 25.00 9.0000E-06 1.000
$ ` 4�a�nPG Well
eife Isotropic
Z-14 7- ( 16000.00 6150.00 0.300 80.00 1.2000E 05 1.100
s Material Model - Isotropic...
SURFACES
Srkface Mater. Thickness Excentr. Integrated Objects No.
No Surface Type Boundary Line No, No. Type d [mm] ` ez [mm] Nodes Lines I Openings
Plane 7,68,51,52,58,1,61, 2 Constant 25.0 0.0 60,62,76,
63,70;75,77,80,2,89, 78
88 3-6
NODAL SUPPORTS
x SC1p�iof3 Rotation PI olumn Support Conditions
Y st k Nois;No Sequen. about X about Y about Z In Z ux ur I ur I wx I (Prwz
Z = 5 T48,53,83,88 1 XYZ 1 0.001 0.001 0.001 U Spring I Spring I N I U I U I U
�wvr�� vvrrvrt � v � vrRmvv
Support Translation Spring [Wmm] Rotation spring [Nm/rad]
No NodesN¢; C,x, C ,r C,.r Ca,x' Cm,r C�,z
..
5 48,53,83,88 1 20000.0 1 20000.0
;I;ine
Surface° `
Side
Axial/Shear
N
Release-/ Spring [N/mmz] >
Vy V.
Moment Release / Spring [NWrad/mm]
MT My Mz
1
1
-
U
100.0
100.0
N
U
U
2
1
-
❑
100.0
100.0
V9
U
3
1
-
U
100.0
100.0
181
U
" 4
1
U
100.0
100.0
N
U
5
1
-
U
100.0
100.0
0
U
U
6
1
U
100.0
100.0
N
❑
U
7
1
-
Cl
100.0
100.0
M
U
LJ
` 61 .
1
❑
100.0
100.0
kQ
U
❑
52
1
-
U
100.0
100.0
21
U
U
58
1
U
100.0
100.0
N
U
11 1
61
1
-
U
100.0
100.0
W
U
Li
83
1
U
100.0
100.0
0
U
❑
68
1
-
U
100.0
100.0
rA
U
U
70
1
U100.0
100.0
M
U
U
i5
1
-
IU
100.0
100.0
N
U
U
77
1
U
100.0
100.0
0
U
Li
80
1
-
U
100.0
100.0
0
U
U
U
100.0
100.0
N
U
❑
89
1
U
100.0
100.0
0
U
III
oc,1 TRFEM 4.10.2880-Arbitrary 3D Shuctures solved using FEM vnNuv diubal.com
Josef Gartner GmbH Page: 4/64
GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073184-0 - Fax: 09073/84-2100 STRUCTURE
Project. J , i _ Structure: SenchmarkGestell-V3Dowel Date: 08/02/2013
""°'°" IW.63
n
ElSegi
CROSS
-SECTIONS
y Cross section
Meter.
iT [cm4]
Iv I1-2
No
Description
No.
A 1-21
Av cm2]
A= (cm21
1
RRO 200x100x6.3
1
1470.00
1770.00
600.00
35.20
7.93
22.46
oaoioova rma rorzss(es
`v 'Z.,
-RRO200X100x6.3 -.-
1
- 1470.00
1770.00
600.00
35.20
7.93
22.46
3 2ORO
60x4
1
71.
4.
45.90
E:]
8.82 82
3.76 76
3.7676
4
RRO200x700x6.3
1
1470.00
1770.00
600.00
35.20
7.93
22.46
3 5
ORO 100x4
1
357.00
233.00
233.00
c t&R35(RNx)
15.20
6.42
6.42
6
Rectangle 2513165
2
1640.23
6605107.50
412.11
791.25
659.37
659.37
Cable PG 5 (Pfeifer)
3
0.04
0.02
0.02
0.39
0.33
0.33
Y-X MEMBER RELEASES
z f41 ase 'force Release or SpringjN/mm] Moment Release or Spring [Nm/rad]
r
"o N Vy'; Vz MT My Mz Comment
Y-�'X ; MEMBER ECCENTRICITIES
z '' FEoo Rr#fersnce Member Start'- EocentriGty [mm] Member End - Eccentricity [mm]
Tz
em e1c ei,Y e1,z 8Lx eix aJ2 Comment
1 1-4; 1 Global 0.0 150.0 0.0 0,0 150.0 0.0
�r Global 0,0 A50.0 0.0 0.0 -150.0 0.0
K
1'
MEMBERS
rna Mlember Line Rotation Cross section Release No. Ecc. Div. Length
' fed No Member Type 8 [°] Start End i Start End No. No. L [an]'
• P pr,Y zl 1 1 Beam Angle 90.00 2 2 205.00 X
+"+ �e a z 2 Beam Angle 90.00 2 2 - - - 25.00 X
r 3 3 Beam Angle 90.00 2 2 1 25.00 X
Stan Y 4r ., , 4 Beam Angle 90.00 2 2 - - - 305.00 X
Hew, 5, 5 Beam Angle 90.00 2 2 - 210.00 X
_ = 8 e o• 6 6 Beam Angle 90.00 2 2 - 210.00 X
7 7 Beam Angle 90.00 2 2 - 305.00 X
:,48„ Beam Angle 90.00 1 1 - 15.80 Y
49 Beam Angle 0.00 3 3 1 2 296.26 YZ
50 50 Beam Angle 90.00 1 1 - - - - 144.20 Y
51 >- 51 Beam Angle 90.00 4 4 - 91.20 Z
52 ,:52 Beam Angle 90.00 4 4 - - 258.80 Z
53 = 53 Beam Angle 90.00 1 1 - 60.00 Y
S8 58 Beam Angle 90.00 2 2 - 25.00 X
60 60 Beam Angle 90.00 5 5 1 20.00 X
6� 61 Beam Angle 80.00 5 5 - 2 - 40.00 X
62 62 Beam Angle 90.00 5 5 1 20.00 X
63 63 . Beam Angle 90.00 2 2 - 60.00 X
68 ' 68 Beam Angle 90.00 2 2 1 25.00 X
76 70 Beam Angle 90.00 2 2 - - 420.00 X
75 75 Beam Angle 90.00 2 2 60.00 X
76 `76 Beam Angle 90.00 5 5 1 20.00 X
77 77 Beam Angle 90.00 5 5 2 40.00 X
78 78 Beam Angle 90.00 5 5 - 1 20.00 X
8dj 80 Beam Angle 90.00 2 2 205.00 X
85r 85 Beam Angle 90.00 1 1 15.80 Y
8f> , 86 Beam Angle 0.00 3 3 1 2 296.26 YZ
8T, 87 Beam Angle 90.00 1 1 - - - 144.20 Y
86 88 Beam Angle 90,00 4 4 91.20 Z
89 ` Beam Angle 90.00 4 4 258.80 Z
s 80 90 Beam Angle 90.00 1 1 60.00 Y
® RFEM 400.2680 - Arbitrary 30 Structures solved using FEM www.diubal.com
Surface
Thicknesses
d Imml
25.0
%' —"- X
Josef Gartner GmbH Page: 5/54
Gartnerstralle 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 GRAPHICS
Project ;7W2 Structure: BenchmarkGesiell-Mowel
STRUCTURE
Date: 08/02/2013
Isometric
® T RFEM 4.10.2680 -Arbitrary 3D Structures solved using FEM
www.diubal.com
`
Josef Gartner GmbH
Page. 6/54
GartnerstraBe 20, 89423 GUNDELFINGEN
Sheet: 1
Tel: 09073/84-0 - Fax: ON73/84-2100
LOADS
ProjectAC2
Structure: BenchmarkGestelf-Mowel Date:
08/02/2013
LOAD CASES
Method of
LC Description
LC Factor
Property of load case
Self weight
Analysis
q
3
Self -weight
%Mnd .
EQ-X
1.0000
1.0000
1.0000
Permanent
Variable
Permanent
1.00
0.65/0.0010.00
3rd Order
3rd Order
3rd Order
4„
;E4-Y _
1.0000
Permanent
0.00/0.66/0.00
3rd Order
® I RFEM 4.10.2680 -Arbitrary 3D Structures solved using FEM 1 www.dlubal.com
` Josef Gartner GmbH Page: 7154
Gartnerstrafle 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073184-0 - Fax: 09073/84-2100 LOADS
MkPrqject:AI Structure: BenchmarkGostell-Mowei Date: 08/02/2013
SETTINGS FOR NON -LINEAR ANALYSIS
LC
Favorable effects
Divide results back
Reduction of Stilfies
<No
1 C Deskxiption
due to Tension Forces
by LG Factor
by Gamma M
("
Se weight
❑
�l
3
EQ-X
m
❑
z
Lj
LC2
SURFACE LOADS LC:
Load
Load.
Load
Load Parameters
Wind
< Ntl
On Surfaces No.
Type
Distribution
Direction
Symbol I Value I Unit
Force Uniform z p, 1.050 kN/m2
LOAD GROUPS
LG
Method of
No
LG DasCription. -
Factor
Load Cases in LG
Analysis
1 -
1.0000
1.2'LC1 + 1.6'LC2
3rd Order
1.0000
1.2'LC1 - 1.6"LC2
3rd Order
1.0000
0.9'LC1 + 1.6-LC2
3rd Order
4
1.0000
0.9•LC1 - 1.6'LC2
3rd Order
5 7 :
1.0000
1.2'LC1 + LC3 + LC4
3rd Order
6
SLS DL+0,7 Wind
1.0000
LC1 +0.7'LC2
3rd Ober
SETTINGS FOR NON -LINEAR ANALYSIS
LG
Favorable effects
Divide results balk_
Reduction of Stifines
No
LG Desaiptign-
due to Tension Forces
by LG Factor
by Gamma-M
1
1.2"LCt + 1.6'LC2
29
Li
A
1.2•LC1-1.6'LC2
0
G
3 ;
0.9•LC1 + 1.6'LC2
0
Li
2?l
+t
0.9'LC1 -1'.6-LC2
0
J
M
5
1.2'1-C1 + LC3 + LC4
<9
L l
6 „
SLS DL+0,7 Wind ;,
!
L7
m
* LOAD COMBINATIONS
IJo ,[ CQ Descripilon I Combination Criteria
1I LG1/P or LG2/P or LG3/P or LG4/P or LG5/P
® 1 RFEM 4.10.2MO -Arbitrary 3D Structures solved using FEM Iwww.diubal.com
Josef Gartner GmbH Page: 8/54
GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S
Protect : Structure: BenchmarkGesbelf-Mowel I Date: 08/02/2013
■ RESULTS -SUMMARY
F . a° ,Desatptlolt',
Value
Unit
Comment
LC2 - Wind
Sum of Leads in X s
0.00
kN
Sum of SupRoit Reactions inX` '
0.00
kN
Sum of Loads in Y
39.68
kN
Sum of Support Reactions in Y
39.68
kN
Deviation 0.00%
Sum of LoadiQA Z ,
0.61
kN
Sum of SupporkReactfons`in Z
0.51
kN
Deviation -0.00%
Max Displacement in X
-1.1
mm
Member No. 77, x: 0.00 o n
Max Displacement in Y
88.9
mm
Member No. 6, x: 210.00 cm
Max Displacement in Z
2.4
mm
FE Node No. 110 (X: 550.00, Y: 50.00, Z:-339.87 cm)
Max. Vector Displacement
88.9
mm
Member No. 6, x: 210.00 an
Max rotation about X
32.0
mrad
FE Node No. 3830 (X: 540.00, Y: 50.00, Z: -9.95 cm)
Max rotation about Y
-0.3
mrad
Member No. 68, x: 0.00 cm
Max rotation about Z
-26.5
mrad
FE Node No. 1000 (X: 1071.67, Y: 50.00, Z:-258.80 cm)
Method ofAnatyais
3rd Order
Large Deformation Analysis (Non -linear, Newton-Raphson)
Conside4avorable effact$of tensile forces of membe
Yes
Divide resuls.00 Gy LG factor -
NO
,
SUffness:lZeductior�,fryGemr0 M
Yes
umberof+iteretions
7
L
Sum of Loads in X.:: '
0.00
kN
Sum of Sup R0,n 6actions.in X-
0.00
kN
Sum of Loads in Y
63.47
kN
Sum of Support Reactions in Y
63.47
kN
Deviation 0.00%
Sum of Loads in Z
41.18
kN
Sum of;laiipleaisionsin Z-=
41.18
kN
Deviation 0.00%
Max Displacement in X
-2.3
mm
Member No. 88, x: 0.00 an
Max Displacement in Y
150.1
mm
Member No. 6, x: 210.00 an
Max Displacement in Z
6.8
mm
Member No. 6, x: 210.00 an
Max. Vector Displacement
150.3
mm
Member No. 6, x: 210.00 cm
Max rotation about X
50.0
mrad
FE Node No. 3830 (X: 540.00, Y: 50.00, Z: -9.95 an)
Max rotation about Y
-0.9
mrad
Member No. 68, x: 0.00 am
Max rotation about Z
-42.8
mrad
FE Node No. 1000 (X: 1071.67, Y: 50.00, Z:-258.80 cm)
Method 0.(-' ysis
3rd Order
Large Deformation Analysis (Non4inear, Newton-Raphson)
Consider favorable effects of tensile forces of membe
Yes
Divide results back by LG factor
No
Stiffness Reduction by Gamma-M
Yes
Consider favorable effects due to tension forces of m
Yes
Divide results back by LG factor
No
Reduction of stiffness by safety factor
Yes
Number of Iterations
9
L - 1- ` y
Sum of Loads in X
0.00
kN
Sum of Support Reactions in X
0.00
kN
Sum of Loads m T ! '
-63.47
kN
Sum of SipReaisiYpocton
-63.47
kN
Deviation 0.00%
Sum of Loads rn Z
41.10
kN
Sum of Support Reactions in Z
41.10
kN
Deviation 0.00%
Max Displa0emerft in X
-2.3
mm
Member No. 88, x: 0.00 cm
Max DlspJacementdi Y
-144.9
mm `
Member No. 6, x: 210.00 om
Max Displaoementjn Z
2.2
mm
Member No. 6, x: 210.00 am
Max. Vector Displaoeltrent
144.9
mm
Member No. 6, x: 210.00 an
Max rotation about X
-48.7
mrad
FE Node No. 3830 (X: 540.00, Y: 50.00, Z: -9.95 an)
Max ratat on1eboutY
1.0
mrad
Member No. 86, x: 0.00 cm
Max rotatioh ebout:2 -. -
-42.3
mrad
FE Node No. 998 (X: 8.33, Y: 50.00, Z:-268.93 an)
Method of AriNO*
3rd Order
Large Deformation Analysis (Non -linear, Newton-Raphson)
Consider fayorabib-effects of tenalle forces of membe
Yes
Divider u back y LG factor
Stiffness udiof Gamma M
No
Yes
'l ,
Consider favorableects due to tension fora of m
Yes
Divide results back by LG factor
No
Reduction of stiffness by safety factor
Yes
NumberorIteratidns _'
9
L + .
Sum of Loads iqX'
0.00
IN
Sum ofSuppor(04ic ions in;X;
0.00
kN
Sum of Loads in Y
63.47
kN
Sum of Support Reactions in Y
63.47
kN
Deviation 0.00%
Sum of Loads
31.22
-IdJ
Sum of Suppoit Reactions sr Z ; ,
31.22
kN
Deviation 0.00%
Max Displacement in X
-2.2
mm
Member No. 88, x: 0.00 am
Max Displacement in Y
148.0
mm
Member No. 6, x: 210.00 am
Max Displacement in Z
6.4
mm
Member No. 6, x: 210.00 cm
Max. Vector Displacement
148.2
mm
Member No. 6, x: 210.00 am
Max rotation about X
49.4
mrad
FE Node No. 3830 (X: 540.00, Y: 50.00, Z: -9.95 an)
Max rotation about
-0.9
mrad
Member No. 68, x: 0.00 om
Max rotation about Z
-42.5
mrad
FE Node No. 1000 (X: 1071.67, Y: 50.00, Z:-258.80 am)
Method :ofAnatysis: _ - ..
3rd Order
:
Large Deformation Analysis (Non41near, Newton-Raphson)
Consider favorable effects of tensile forces of membe
Yes
Divide results back by LG factor
No
Stiffness Reduction by Gamma-M
Yes
Consider favorable effects due to tension forces of m
Yes
Divide results back by LG factor
No
Reduction of stiffness by safety factor
Yes
Number of Iterations
9
Sum of Loads in X
0.00
kN
Sum of Support Reactions in X
0.00
kN
Ask
® RFEM 4.10.2680 - Arbitrary 3D Structures solved using FEM www.dlubal.com
I IL:
Josef Gartner GmbH
GartnerstraBe 20, 89423 GUNDELFINGEN
Tel: 09073/84-0 - Fax: 09073/84.2100
■ RFRI II TR - R1 IMMARY
Page: 9/54
Sheet: 1
RESULTS
Project:'.- C2 , Structure: BenchmarkG99WI V$Dowet I Date: 08/02/2013
Detption %
.., Value
Unit
Comment
Sum of Loads irlY.
-63.47
kN
Sum ofsi;p - Reactions in"Y`
-63.47
kN
Deviation 0.00%
Sum of Loads in,Z
31.16
IN
Sum of Support Reactions in Z
31.16
kN
Deviation 0.00%
Max Dispieoembrtt in W_ „
-2.3
mm
Member No. 88, x: 0.00 cm
Max Diaplacemeirt in Y
-144:3
mm
Member No. 6, x 210.00 cm
Max DisptaeeAlent in Z
1.9
mm
Member No. 6, z 210.00 cm
Max Vector Displacement
144.3
mm
Member No. 6, x: 210.00 an
Max rotation abouLX
48.6
cored
FE Node No. 3830 (X: 540:00, Y. 50.00, Z: -9.95 cm)
Max rotation abut Y ,
1.0
mrad
Member No.86, x: 0.00 cm
Max rotat o[t�kopt Z".
-42.1
mrad
FE Node No. 998 (X: 8.33, Y: 50.00, Z:-268.93 an)
Method of Analysis
3rd Order
Large Deformation Analysis (Non -linear, Newton-Raphson)
Consider favorable efteds oftensile foroes.of membe
Yes
Divide results bath by LGfiactor
No
Strffness;Reductigit by Gamma M
Yes
Considerfavoreb(e effects due to tension forces of m
Yes
Divide results back by LG factor
No
Reduction of stiffness by safety factor
Yes
NumberoF,"iteTatYoni;• .'
9
+ wa +
Sum of Uoads in X:
Sum of s- poi , k', ums in.Xi
21.53
21.53
kN
kN
Deviation 0.00%
Sum of Loads in Y
21.53
kN
Sum of Support Reactions in Y
21.53
kN
Deviation 0.00%
Sum of (jails
39:75
kN
Sum of Support=Reactio-nivin Z
39.75
kN
Deviation 0.00%
Max Displacement m X
1.3
mm
Member No. 49, x: 169.29 an
Max Displacement in Y
48.5
mm
Member No. 6, x: 210.00 am
Max Displacement In Z
2.5
mm
Member No. 5, x: 100.00 an
Max. Vector Displacement
48.5
mm
Member No. 6, x: 210.00 an
Max rotation about X
16.2
mrad
FE Node No. 3829 (X: 550.00, Y: 50.00, Z: -9.95 cm)
Max rotation about Y
0.6
mrad
Member No. 49, x: 296.26 o n
Max rotation about Z
13.0
mrad
FE Node No. 998 (X: 8.33, Y: 50.00, Z-268.93 cm)
Method.df Andlysjs: ;
3rd Order
Large Deformation Analysis (Non4inear, Newton-Raphson)
Consider favorable erfects of tensile forces of membe
Yes
Divide results back by LG factor
No
Stiffness Reduction by Gamma-M
Yes
Consider favorable effects due to tension forces of m
Yes
Divide result's balk by LG factor
No
Reduction of stiffness by safety factor
Yes
Number of iterations
4
L
Sum of Loads In X
0.00
kN
Sum of Support Reactions in X
0.00
kN
Sum of Loads in Y, =
27.78
kN
Sum of Suppert Readions'In Y,
27.78
IN
Deviation 0.00%
Sum of Loadsin'Z
33.41
IN
Sum of Support Reactions in Z
33.41
kN
Deviation 0.00%
Max Disptaoement•1ra X
-0.7
mm
Member No. 77, x: 0.00 art
Max Dlsplagameitt in Y
66s8
. mm
Member No. 6, x: 210.00 an
Max Orsplaoerlent in 2
2.8
mm
Member No. 6,. x: 200.00 an
Max*
ax Veer DTsplgcemerlt ' .
66.9
mm
Member No. 6, x: 210.00 an
Max nnatton aboutX
24.4
cored
FE Node No. 3830 (X: 540.00, Y: 50.00, Z: -9.95 an)
Max rot8tiprr about Y
-0.2
mrad
Member No. 68, x: .00 cm
Max rotation about Z., ."
-19.2
`mrad
FE Node No. 1111 (X: 1071,67, Y: 50.00, Z:-248.85 cm)
Method of Analysis
3rd Order
Large Deformation Analysis (Non -linear, Newton-Raphson)
.
Consider_ le opeds,oftensile forces of membe
Divde resu0 its by LG factor "
Yes
No
StifinessRddufsron by Gamma M
Yes
Consider favorable effects due to tension forces of m
Yes
Divide results back by LG factor
No
Reduction of stiffness by safety factor
Yes
NumWt,`dFII6ibI1dns;
6
Summary
Number of 1D Finite Elements
306
Number of 2D Finite Elements
3850
Number of 3D Finite Elements
0
Number of FE Mesh Nodes
4002
Number of Equations
24012
Matri(Solver Method
Direct
Max Number of•Heretiats
100
NumberofLs
Nurriber;of Divisions:for Member Results
10
Solver Version 64 lift
DivvsiohalGable/FoyndationfraperedMembers'
1
Refer IntemaPForpesto Deformed Structure
Yes
Actrvate:learrig(dity (A Y Ai) of members
No
Bending
Mindlin
Akxwracf+cfconvergenae criteria in the nonlinear FE
1
■ NODES - SUPPORT FORCES
Node F Support forces [kN] Support moments [kNm]
No. LC/LG r ws y, Y ,4 R� Mx. Mr 1Nz
. G I i i
8 1 LC2 1 6.261 10,04 -15.70 0 .001 0.001 0.00
® RFEM 4.10.2680 - Arbitrary 3D Structures solved using FEM vwwv.diubal.com
Josef Gartner GmbH Page: 10/54
GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S
Project:, Structure: BenchmarkGAstell-V30owe1 Date: 08/02/2013
ii NODES
-SUPPORT
FORCES
Node
Support moments (kNmj
No.
LC/LG
RI> , _
_'.. ,Pr , .:,
P.p
MxMr Mz
48
LG1
10.05
16.14
-19.88
0.00
0.00
0.00
LG2
8.02
<: 4646
31.63
0.00
0.00
0.00
LG3
'10.09
16,12
-21.17
0.00
0.00
0.00
LG4
-6.00
'' . ,-1804
30.09
0.00
0.00
0.00
1.135
6.62
5.41
3.64
0.00
0.00
0.00
LG6
4.21
` 7:03
-6.49
0.00
0.00
0.00
53
LC2
-12.09
9.80
15.96
0.00
0.00
0.00
LG1
45;60
40.47
0.00
0.00
0.00
LG2
23.04
-15.68
-11.08
0.00
0.00
0.00
LG3
-18.61'
> i5:61
36.77
0.00
0.00
0.00
LG4
23.15
-15.70
-14.51
0.00
0,001
0.00
LG5
1 Z9
: 6.29
20.16
0.00
0.00
0.00
LG6
-9.03
6.86
23.19
0.00
1
0.00
83
LC2
; ,636
:- '. 10.04
-15.70
` 0.00
0.00
0.00
LGt
-10.05
16.14
-19.88
0.00
0.00
0.00
LG2
802
"A 0
31.63
0.00-
0.00
0.00
LG3
-10.09
16.12
-21.17
0.00
0.00
0.00
LG4
46:04
; ; 30.09
0.00
0.00
0.00
LG5
-0.01
5.48
-1.83
0.00
0.00
0.00
LG6
4.21
s . 703
'" -6.49
0.00
0.001
0.00
88
LC2
12.09
9.80
15.96
0.00
0.00
0.00
LG1
18.71
;: 15:60
40.47
0.00
0.00
0.00
LG2
-23.04
-15.68
-11.08
0.00
0.00
0.00
LG3
18.81`
:.- ' 15.61
36.77
, 0.00
0.00
0.00
LG4
-23.15
-15.70
-14.51
0.00
0.00
0.00
LG5
14Q2
<= 5.36
-; 25.05
`_ -0.00
0.00
0.00
LG6
9.03
6.86
23.19
0.00
0.00
0.00
£ Suppo
LC2
O:Od
; : 38 88
. 0.51
£ Loads
0.00
39.68
0.51
£ Suppo
LG1
0.00
i :63.47
`;; 41.18
£ Suppo
LG2
0.00
-63.47
41.10
£Suppo
LG3
0.00
63A7
' . 31.22
£ Suppo
LG4
0.00
, -63.47
31.16
£ Suppo
LG5
21.53
21:53
. 39.75
£ Suppo
LG6
0.001
27.781
33.41
® RFEM 4.10.2680 - Arbitrary 31) Shutt. solved using FEM www.diubal.com
Josef Gartner GmbH Page: 11/54
Gartnerstralle 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073184-0 - Fax: 09073/84-2100 GRAPHICS
Protect AC2 Structure: BenchmarkGestell-Mowel Date:
LCl: SELF -WEIGHT
08/02/2013
Isometric
® T RFEM 4A0.2880 -Arbitrary 3D Structures solved using FEM
www.diubst.com
Josef Gartner GmbH
Gartnerstralle 20, 89423 GUNDELFINGEN
Tel: 09073184-0 - Fax: 09073/84-2100
Page: 12/54
Sheet: 1
GRAPHICS
project:=AE2 ` "` , Structure: ElenchmarkGostell-Mowel I Date:
# LG1: 1.2*LC1 + 1.6*LC2
LG1: 1.2*LC1 + 1.6*LC2
Support Reactions[kN]
15.60
"max
08/02/2013
Isometric
19.88
, 0 _,
® RFEM 4.10.2M -Arbitrary 313 Structures solved using FEM
www.diubal.com
Josef Gartner GmbH Page: 13154
Gartnerstraf3e 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073184-2100 GRAPHICS
Project: :At Structure: BenchmarkGesbelt-Mowel I Date:
# LG2:1.2*LC1 -1.6*LC2
LG2: 1.2*LC1 - 1.6*LC2
Support Reactions[kN]
`max
2:
08/02/2013
Isometric
16.06
® T RFEM 4.10.26M - Arbitrary 3D Structures solved using FEM
wwwdiubal.com
Josef Gartner GmbH Page: 14/54
GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 GRAPHICS
Project:A Structure: BenchrnarkGestell-Mowel I Date:
t LG3c 0.9*LC1 + 1.6*LC2
LG3: 0.9*LC1 + 1.6*LC2
Support Reactions[kN]
15.61
36.
08/02/2013
Isometric
21.17
09
® T RFEM 4.10.2880 - Arbitrary 313 Structures solved using FEM
www.dlubal.com
Josef Gartner GmbH
GartnerstraBe 20, 89423 GUNDELFINGEN
Tel: 09073/84-0 - Fax: 09073/84-2100
Project AC ,,,, Structure: Benchnnark"11911-Mowei
LG4: 0.9*LC1-1.6*LC2
LG4: 0.9*LC1 - 1.6*LC2
Support Reactions[kN]
"`-x
2-
Pager 15/54
Sheet: 1
GRAPHICS
Date: 08/02/2013
Isometric
16.04
® T RFEM 4.10.2880 -Arbitrary 313 Structures solved using FEM
www.diubal.com
Josef Gartner GmbH Page: 16/54
GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 GRAPHICS
Project: � 1G2:, Structure: BenchtnarkGeste11-WElowel I Date:
t LG5: 1.2*LC1 + LC3 + LC4
LG5: 1.2*LC1 + LC3 + LC4
Support Reactions[kN]
5.29
1
20.:
:ar'c •rs 3
08/02/2013
Isometric
® T RFEM 4.10.2680 - Arbitrary 313 Structures solved using FEM
www.diubal.com
Josef Gartner GmbH
Gartnerstralle 20, 89423 GUNDELFINGEN
Tel: 09073/84-0 - Fax: 09073/84-2100
Project ACZ , ; Structure: Benchmark6seWil-Mowel
SURFACES SIGMA-1,+, LC2: WIND
LC2: Wind
Support Reactions[kN]
Surfaces Sigma-1,+
67! R�mm21
15.148
13.867
12587
11.306
%025
8.744
7.463
6.182
4.001
3.62D
Z338
1.058
MR(: 15.148
Surfaces Max Sigma-1,+: 15.148, Min Sigma-1,+: 1.058 [N/mm2]
Page: 17/54
Sheet: 1
GRAPHICS
Date: 08/02/2013
Isometric
15.'70
i6
® T RFEM 4.10.2680 • Arbitrary 3D Structures solved using FEM
www.diubal.com
Josef Gartner GmbH Page: 18/54
GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 GRAPHICS
Protect =ACZ Structure: BenchmarWest ell-V3Dowe1 I Date:
f DEFORMATIONS U, LG6: SLS DL+0,7 WIND
LG6: SLS DL+0,7 Wind
u
Darome8on
[ui [--I
66.9
80.9
64.8
48.8
4V
36.7
30.6
24.6
18.5
12.5
8.5
0.4
Max: 66.9
Mn : 0.4
Max u: 66.9, Min u: 0.4 [mm]
Factor of deformations: 17.00
Values: u [mm]
08/0=013
Isometric
TRFEM 4.10.2660 -Arbitrary 3D Strictures solved using FEM
www.diubal.com
Josef Gartner GmbH
GartnerstraBe 20, 89423 GUNDELFINGEN
Tel: 09073184-0 - Fax: 09073184-2100
Project AC2; Structure: BenchmarkGesie[I-Mowet
■ NODES -SUPPORT FORCES
Page: 19/54
Sheet: 1
RESULTS
Date: 08/02/2013
Load combinations
Node
No. -
CO
Support
x
races JM
Pv; .:
pr =.
Support momen
M' Mr Mz
48
C01
Max
10.09
16.14
31.63
0.00
0.00
0.00
Min
8.02
-`-1t3:06
-21.17
0.00
0.00
0.00
53
COt
Max
23.16
15.61
40.47
0.00
0.00
0.00
-15 70
-14.61
0.00
0.00
0.00
83
COt
Max
8.02
16.14
31.63
0.00
0.00
0.00
min
16.09
`. -16.06
-21.17
0.00
0.00
0.00
88
C01
Max
1s.71
15.61
40.47
0.00
0.00
0.00
On
-23.15
-15.70
=14.51
0.00
0.00
0.00
■ MEMBERS -
Load combinations
Member
Np�B
L cation
Aispiaceinants [mm]
Rotations [mrad]
No.
CO
QUA']
ux uy uZ
TX wy T:
Section
1
C01
59
0.00
max
0.7
3.7
1.6
0.3
4.6
0.5
2 - RRO 200x100x6.3
min
. ; 0.2
-1.0
-1.7
-1.7
4.2
0.2
60
205.00
max
0.8
4.4
18.6
0.3
10.2
0.2
min
0.2
' -OA
' -19.5
-1.7
-9.8
0.1
2
Cot
81
0.00
max
0.7
3.7
1.6
0.3
4.2
-0.1
2 - RRO 200x100x6.3
1; 1min
-0.3
_ -1.0
-1.7
-1.7
4.6
-0.5
86
25.00
max
0.7
3.6
0.8
0.3
2.4
0.0
in
-0.3
-1.1
-0.8
-1.7
-2.7
0.5
3
c01
78
0.00
max
0.7
3.9
19.2
8.2
40.0
-0.1
2 - RRO 200x100x6.3
min
-2.1
-1.0
'+ -24.7
5.7
-39.7
-0.8
85
25.00
max
0.7
3.7
9.3
8.2
40.1
-0.1
min
-2.3
-1.2
-14.7
5.7
-39.8
-0.9
4
c01
70
0.00
max
0.9
6.2
120.6
8.1
22.5
-0.0
2 - RRO 200x100x6.3
min
-0.3
1.2
-126.0
5.7
-22.4
-0.5
78
305.00
max
0.7
3.9
19.2
8.2
40.0
-0.1
min
-2.1
-1.0
-24.7
5.7
-39.7
-0.8
5
C01
68
0.00
max
0.9
6.8
144.9
8.1
0.1
0.0
2 - RRO 200x100x6.3
min
0.0
1.9
-150.1
5.6
0.0
0.0
70
210.00
max
0.9
6.2
120.6
8.1
22.5
-0.0
min
-0.3
12
1 -126.0
-5.7
-22.4
-0.5
6
COi
63
0.00
max
1.0
6.2
120.6
8.1
22.4
0.5
2 - RRO 200x100x6.3
min
0.3
1.2
-126.0
-5.7
-22.5
0.1
68
210.00
max
0.9
6.8
144.9
8.1
0.1
0.0
min
0.0
1.9
A50.1
5.6
0.01
0.0
7
C01
55
0.00
max
2.1
3.9
19.2
8.2
39.7
0.8
2 - RRO 200x100x6.3
min
1.1
-1.0
-24.7
5.7
-40.0
0.2
63
306.00
max
1.0
6.2
120.6
8.1
22.4
0.5
min
0.3
' 1.2
-126.0
5.7
-22.5
0.1
48-
C01
48
0.00
Max
0.8
0.0
0.5
-0.2
0.6
2.9
1 - RRO 200x100x6.3
min
-0.8
0.0
" -0.4
-0.5
-1.1
0.4
49
15.80
max
0.8
0.5
0.7
-0.2
0.6
3.1
in
-0.8
0.1
-0.5
-0.5
-1.11
0.1
49
c01
49
0.00
max
0.1
0.5
0.9
0.8
0.7
-0.4
3 - QRO 60x4
min
45
-0.7
-0.7
-0.8
-2.9
-0.8
51
296.26
Max
0.7
-1.1
8.5
0.8
2.0
0.3
min
4.3
-1.8
-4.6
-0.8
-2.2
-0.8
50
C01
49
0.00
max
0.8
0.5
0.7
-0.2
0.6
3.1
1 - RRO 200x100x6.3
min
-0.8
_ 0.1
-0.5
-0.5
-1.1
0.1
47
144.20
max
0.8
3.6
0.7
-0.2
2.7
0.3
in
-0.8
- -1.1
02
-0.5
-2.4
-1.7
61.
C01
50
0.00
Max
3.7
-1.1
9.3
2.7
5.7
0.6
4 - RRO 200x100x6.3
Min
-1.2
-2.3
-14.7
-2.4
-8.2
0.1
51
91.20
max
3.6
-1.1
4.6
2.7
4.2
0.7
mm
. -1.2
-1.8
-7.7
-2.4
-6.7
0.1
52
C01
51
0.00
Max
3.6
-1.1
4.6
2.7
4.2
0.7
4 - RRO 200x100x6.3
min
-11
-1.8
' -7.7
-2.4
-6.7
0.1
47
268.80
max
3.6
-0.2
0.8
2.7
1.7
0.5
min
-1.1
-0.7
-0.8
-2.4
-0.3
0.2
53
C01
47
0.00
max
0.8
3.6
0.7
-0.2
2.7
0.3
1 - RRO 200x10ox6.3
Mir!
-0.8
-1.1
' 0.2
-0.5
-2.4
-1.7
53
60.00
max
0.8
0.0
1.2
-0.2
1.7
2.6
min
4.81
0.0
-0.9
-0.5
-1.2
-8.1
58
c01
47
0.00
max
0.7
3.6
0.8
0.3
2.7
0.5
2 - RRO 200x100x6.3
min
- 0.2
-1.1
-0.8
-1.7
-2.4
0.2
® RFEM 4.10.2880 - Arbitrary 3D Structures solved using FEM vwwvdlubal.com
Josef Gartner GmbH Page: 20/54
GartnerstraRe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S
Project: Structure: Benchnnark0es6e11-Mowel - I Date: 08/02/2013
AIL
® RFEM 4,10.2880 - Arbitrary 3D Structures solved using FEM www.diubal.com
Josef Gartner GmbH Page: 21154
GartnerstraRe 20, 89423 GUNDELFINGEN Sheet: r 1
Tel: 09073184-0 - Fax: 09073/84-2100 R E S U L T S
Protect: `•At:2 Structure: SenchmarkGeste11-V31101owei Date: 08/02/2013
■ MLMULK3
- ULFORMAI
IONS
Low comDinanons
Member
Node
j,9h
Displaoemepts
[mm]
Rotations (mrad]
No.
CO
?4 ..
x X[7lt�' _
...:. ,
8x
uy uz
(PX' qy (nz
Section
89 r
C01
86
0.00
max
3.6
1.8
4.6
2.4
4.2
-0.0
4 - RRO 200x100x6.3
-1.2
- -0.7
-7.7
-2.7
-6.7
-0.7
56
258.80
max
3.6
0.3
0.8
2.4
1.7
-0.0
min
-1:1
-0.7
-0.8
-2.7
-0.3
-0.5
90
C01
56
0.00
max
0.8
3.6
0.7
0.5
2.4
1,3
1 - RRO 200x100x6.3
grin
-0.8
-11
-0.3
0.0
-2.7
-1.7
88
60.00
max
0.8
0.0
0.9
0.5
1.2
2.6
min
48
0.0
-1.2
0.0
-1.7
-8.1
i MEMBERS
-INTERNAL FORCES
Load Combinations
Member
NgtleLvcation
i
�Skiear Foross,jkN]
Moments [kNm]
No.
CO
NaG
q r[cmt.
N Vy Vz
Mr My M,
Corresponding Load Cases
1
C01
59
0.00
Max N
16.31
0.10
12.59
-0.00
-22.73
-0.16
LG2
:Min;N
7 6.57
0.28
-12.64
0.00
23.31
-0.11
LG3
Max Vv
7.17
0.34
-12.58
0,00
23.32
-0.11
LG1
Min Vy
15.90
0.05
12.58
-0.00
-22.74
-0.17
LG4
Max V,
16.31
0.10
12,5
-0,00
-22.73
-0.16
LG2
Min'Vz
. 6.57
0.28
-12.64
0.00
23.31
-0.11
LG3
Max MT
6.57
0.28
-12.64
0.0
23.31
-0.11
LG3
Min r
7.86
0.20
-3.76
-0.0
6.74
-0.02
LG5
Max M
7.17
0.34
-12.58
0.00
23.3
-0.11
LG1
Min'W,
15.90
0.05
12.58
-0.00
-22.74
-0.17
LG4
Max M,
T85
0.'20
-3.76
-0.03
6.74
-0.02
LG5
Min M '
15.90
' 0.05
12.58
-0.00
-22.74
-0.17
LG4
60
205.60
Max
4.1
-0.05
-2.41
-0.03
-0.95
-0.01
LG5
Minty
-9.11
-015
-8.06
-0.00
-2.35
-0.07
LG3
Max V
4.10
-0.
-2.41
-0.03
-0.95
-0.01
LG5
MIn:Vy
:. -7.66
-0.1
-8.05
-0.00
-2.35
-0.08
LG1
Max V,
-3.22
-0.10
7.77
0.00
2.16
-0.05
LG4
Mln'Vz
-9.11
-0.15
-8.
-0.00
-2.35
-0.07
LG3
Max Mr
-1.95
-0.11
7.76
O.OD
2.16
-0.05
LG2
Min MT
4:10
-0.05
-2.41
-0,0
-0.95
-0.01
LG5
Max My
-1.95
-0.11
7.76
0.00
2.16
-0.05
LG2
Min M-
-7.66
-0.16
-8.05
-0.00
-2.
-0.08
LG1
max my
1.10
0.05
-2.41
-0.03
-0.95
-0.01
LG5
-7.66
-016
-8.05
-0:00
-2.35
-0.08
LG1
C01
81
0.00
Max N
16.30
-0.10
9
0.00
-22.7
0.16
2
N
-6.11
-0.33
3.91
-0.03
7.84
0.06
LG5
,Mtn
Max V
15.96
-0.0
-12.59
0.00
-22.73
-0.17
LG4
Min V
7.00
-034
12.59
-0.00
23.31
-0.11
LG1
Max V;
6.41
-0.27
12.6
-0.00
23.30
-0-12
LG3
Mm V�
16.38
-0.10
-12.59
0.00
-22.72
-0.16
LG2
Max Mr
16.38
-0.10
-12.59
0.0
-22.72
-0.16
LG2
Min MT
-6.11
- -0.33
3.91
-0.03
7.84
0.05
LG5
Max M
7.00
-0.34
12.59
-0.00
23.31
-0.11
LG1
Min`My
• 15.96
-0.05
-12.59
0.00
-22.7
-0.17
LG4
Max
-6.11
-0.33
3.91
-0.03
7.84
0.05
LG5
_M,
MIn.M
15.96
-0.05:
-12.59
0.00
-22.73
-0.17
LG4
56
25.00
M
16.62
-0.11
-13.74
0.00
-26.78
-0.13
LG4
MiriN
-16.
-0.42
: 4.24
-0.03
9:13
-0.00
LG5
Max V
15.52
-0.11
-13.74
0.00
-26.78
-0.13
LG4
Min Vy
. '. "A2.7
-0.
13.69
-0.00
27.39
-0.26
LG1
Max V,
-12.93
-0.35
13.66
-0.00
27.39
-0.27
LG3
Min V=
" 15.52
-0.11
„ -13.74
0.00
-26.78
-0.13
LG4
Max Mr
15.62
-0.11
-13.74
0.0
-26.78
-0.13
LG4
Mlh MT"
-16.43
-0.42
4.24
-0.03
9.13
-0.00
LG5
Max Mr
-13.27
-0.44
13.59
-0.00
27.3
-0.26
LG1
MIn;My
15.52
-0.11
-13.74
, 0.00
-26.78
-0.13
LG4
Max M,
-16.43
-0.421
4.24
-0.03
9.13
-0.004
LG5
Min w
-12.93
-0.35
13.66
-0.00
27.39
-0.27
LG3
3
C01
78
0.00
Max N
19.811
0.04
11.97
0.02
-3.12
-0.13
LG1
Min N
6.05
0.00
3.78
0.04
-0.98
-0.05
LG5
Max V
16.72
0.07
11.88
0.02
-3.10
-0.12
LG3
Min'Vy
" 15,59
-0.0
-12.11
-0;02
3.14
-0.13
LG2
Max V,
16.81
0.04
11.97
0.02
-3.12
-0.13
LG1
Min%
15.59
'- - -0.02
-12.11
-0.02
3.14
-0.13
LG2
Max Mr
6.05
0.00
3.78
0.
-0.98
-0.05
LG5
Min;Mr
15.59
' -0.02
-12.11
-002
3.14
-0.13
LG2
me)( M
15.59
-0.02
-12.11
-0.02
3.14
-0.13
LG2
'Min My
16.81
0.04
11.97
0.02
-3.1
-0.13
LG1
Max M,
6.05
0.00
3.78
0.04
-0.98
-0.0.5
LG5
Min M'
16,59
-0.02,
-12.11
-0.02
3.14
-0.13
LG2
85
25:00
Max R
-2.5
-0.06
3.90
0.04
0.00
0.03
LG5
Min
-7.01
- -0.04
12.33
0.02
0.02
0.10
LG1
Max V
-6.96
0.01
12.23
0.02
0.02
0.10
LG3
M16,Vy
- -6.71
-0.1
-12.44
-0.02
-0.01
0.09
LG2
Max V,
-7.01
-0.04
12.33
0.02
0.02
0.10
LG1
MWVZ
-0.71
-0.10
-12:44
-0.02
-0.01
0.09
LG2
MT
-2.53
-0.06
3.90
0.04
0.00
0.03
LG5
.Max
Mm MT
-6.71
-0.10
-12.44
-0.02
-0.01
0.09
LG2
Max M
-6.95
0.01
12.23
0.02
0.02
0.10
LG3
Ask
® RFEM 4.10.2680 - Arbitrary 30 Structures solved using FEM www.diubal.com
Josef Gartner GmbH Page: 22/54
GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S
Tproject
. / Structure: BenchmarkGestell-V3Dowel I Date: 08/02/2013
� \AC\AO CAI+ 1\ITCH\IAI ['/1 �/'+G G� I n�/'i rnmhin�4innc
Member
r
Nodg
o
; Sh68r Fmoes [kN]
Moments [kNmJ
-
No.
CO
NO
N .:Vy Vz
Mr My M
Cortesponding Load Cases
3
C01
Min.M
-6.64
-0.05
-12.35
-0.02
-0.01
0.09
LG4
MaxMZ
A.95,
0.01
12.23
0.02
0.02
0.1
LG3
Min M-
-2.53
-0.06
3.90
0.04
0.00
0.03
LG5
4
CUT
70?:`
BX:.
-6
0.02
1.82
0.
-9.83
-0.
L
Min N
-38.77
-0.14
-6.29
-0.01
32.07
-0.18
LG2
Max.yy
.55
-0.0
1.82
0.04
9.83
-0.03
LG5
Min V
-38.77
-0.14
-6.29
-0.01
32.07
-0.18
LG2
Max Vz
37.24
-0.14
6.22
0.01
31.87
-0.17
LG1
Min V,
-38.77
-0.14
5.
-0.01
32.07
-0.18
LG2
:'Max Mr
=6.55
-0.02
1.82
0.04
-9.83
-0.03
LG5
Min Mr
-38.77
-0.14
-6.29
-0.01
32.07
-0.18
LG2
Max My
-38.77
-0.14
-6.29
-0.01
32.07
-0.18
LG2
Min M
-37.24
-0.14
6.22
0.01
-31.87
-0.17
LG1
MezM z
-6.55
-0.02
1.82
0.04
-9.83
-0.
LG5
Min M,
-38.77
-0.14
-6.29
-0.01
32.07
-0.18
LG2
78;i.
'' ,MOO
., : Max N
" 16.8
. 0.04
11.97
0.02
-3.12
-0.13
LG1
Min N
6.05
0.00
3.78
0.04
-0.98
-0.05
LG5
MaxVy
16.72
0.07
11.88
0.02
3.10
-0.12
LG3
Min V
15.69
-0.0
-12.11
-0.02
3.14
-0.13
LG2
Maz'VZ
1.6.82
0.04
11.97
0.02
3.12
-0.13
LG1
Min V,
15.59
-0.02
-12.11
-0.02
3.14
-0.13
LG2
MazMr
6.05
0.00
3.78
0.
-0.98
-0.05
LG5
Min Mr
15.59
-0.02
-12.11
-0,02
3.14
-0.13
LG2
M�;My
,
15.59
-0.02
-12.11
-0.02
3.14
-0.13
LG2
Mire M
16.82
0.04
11.97
0.02
3.1
-0.13
LG1
,
Maz;Mz
. 6.05
0.001
3.78
0.04
-0.98
-0.05
LG5
15.59
-0.02
-12.11
-0.02
3.14
-0.131
LG2
5
COI
681
:0.09
Max%N
A 1.
.0
04
-11.66
-0.04
L
Min N
-57.78
0.00
0.03
0.00
38.33
-0.30
LG2
>.
Me Vy
<57.78
0.
0.03
0.00
38.33
-0.30
LG2
Min V
-11.09
0.
-0.01
0.04
-11.66
-0.04
LG5
MazVz
- ' -57.78
=' 0.00
0.
0.00
38.33
-0.30
LG2
Min V,
-56.32
0.00
-0.
-0.00
-38.08
-0.28
LG1
Max'MT
'-111.09
0.00
-0.01
0.0
-11.66
-0.04
LG5
Min Mr
56.32
0.00
-0.03
-0.
38.08
-0.28
LG1
M8%;My
-57.78
0.00
0.03
0.00
38.3
-0.30
LG2
Min, M,
56.32
0.00
-0.03
-0.00
38.08
-0.28
LG1
Max Mz
"-11.09.
0:00
-0.01
0.04
-11.66
-0.04
LG5
Min M,
-57.78
0.00
0.03
0.00
38.33
-0.30
LG2
1.82
0.04
9.83
-0.03
LG5
Min N
-38.76
-0.14
-6.33
-0.01
32.07
-0.18
LG2
Ma7c:1/y
,' -0.55
-0.02
1.82
' 0.04
-9.83
-0.03
LG5
Min
38.76
-0.14
-6.33
-0.01
32.07
-0.18
LG2
M, .V
,"-37.23.
-0.14
6.2
0.01
31.8T
-0.17
LG1
Min_ V,
.38.76
-0.14
-6.33
-0.01
32.07
-0.18
LG2
Max,Mr.
_
4.55
-0.02
1.82
0.04
9.83
-0.03
LG5
Min Mr
-38.76
-0.14
-6.33
-0.01
32.07
-0.18
LG2
Max;My
.
38.76
0.14
-0:33
-0.01
32.07
-0.18
LG2
Min M
-37.23
-0.14
6.26
0.01
-31.87
-0.17
LG1
"MaxMz
'.55
-0.02
1.82
0.04
9.83
0.03
LG5
Min PUL
-38.76
-0.14
-6.33
-0.01
32.07
-0.18
LG2
1
63 .
_ 0,
-7.2
-1.83
0.04
9.82
-0.03
L
Minty
-38.70
0.14
6.33
0.01
32.07
-0.18
LG2
Max V
-38.76
0.14
6.33
0.01
32.07
-0.18
LG2
Min,VY
-7.20
0.02
-1.83
0.04
-9.82
-0.03
LG5
Max:UZ
38.76
0.14
6.
0.01
32.07
-0.18
LG2
Min V,
.
-37.23
0.14
-6.2
-0.01
-31.87
-0.17
LG7
MaxMr-7.20
0.02
1.83
' 0.04
9.82
-0.03
LG5
Min Mr
37.23
0.14
-6.26
-0.01
31.87
-0.17
LG1
-.
Max:My
38,76
0.14
6.33
0.01
32.07
-0.18
LG2
Min
37.23
0.14
-6.26
-0.01
-31.87
-0.17
LG1
,M
Mex'Mz
-7.20
" 0.02
-1.83
0.04
-9.82
-0.03
LG5
Min M,
38.76
0.14
6.33
0.01
32.07
-0.18
LG2
68 ;
210 00
MtN
A 1.09
0.00
-0.01
0.04
-11.66
-0.04
LG5
Min N
57.7
-0.00
-0.03
-0.00
38.33
-0.30
LG2
,Max V
I1.09
0.
-0.01
0.04
-11.66
-0.04
LG5
Min Vy
-57.78
-0.
-0.03
-0.00
38.33
-0.30
LG2
Max Vz
' - 56.32
-0:00
0.03
0.00
38.08
-0.28
LG1
Min V,
-57.78
-0.00
-0.0
-0.00
38.33
-0.30
LG2
Max-Mr
-11.09.
0.00
-0.01
0.
-11.66
-0.04
LG5
Min Mr
-57.78
-0.00
-0.03
-0.00
38.33
-0.30
LG2
Max=My
,
' `c67.78
-0.00
' -0.03
-0.00
38.
-0.30
LG2
Min M,
56.32
-0.00
0.03
0.00
-38.08
-0.28
LG1
M6k,%
41.09
0.00
-0.01
0.04
-11.66
-0.04
LG5
Min U-
57.78
-0.00
-0.03
-0.00
38.33
-0.30
LG2
7
Col
Max
.1
Min'N
5:93
0.02
3.78
0.04
-0.98
-0.05
LG5
Max*
' 15.59
0.02
12.11
0.02
3.14
-0.13
LG2
Min V,,
16.72
-0.07
-11.88
-0.02
-3.10
-0.12
LG3
Msx Vz
' -15.59
0.02
12.11
0.02
3.14
-0.13
LG2
Min V,
16.82
-0.04
-11.97
-0.02
-3.12
-0.13
LG1
5.93
0.02
-3,78
0.
-0.98
-0.05
LG5
Min MT
16.82
-0.04
-11.97
-0.0
-3.12
-0.13
LG1
MiU My
15.59
0.02
12.11
0.02
3.14
-0.13
LG2
Min M
16.82
-0.04
-11.97
-0.02
-3 12
-0.13
LG1
Mex w
5.93
0.02
3:78
0.04
-0.98
-0.
LG5
Min Mz
16.59
0.02
12.11
0.02
3.14
-0131
LG2
® RFEM 4.10.2680 -Arbitrary 3D SM.Wres solved using FEM www.diubal.com
N
M C
N
O
J
o c
M
ao .0
C E
c
Z
cl
N
+� c
aL v>
O
Z
LU
.=Cw$
OD
co
u.
c! C
Y c 0
'\
V
N
0
H
C
co
u
C
C
a` u
Q
f
t
U
a
u
a
u
U
J
c
I
U
��44 uu??
C�C�C�C7C�C�c7C�C7C�C�C7^NU'
ss22
CN7(�' �C�' t7C9C�(�(JU' (GNU' UN' C�' C7CN7NU' C�(�J(�' C7C�
�p
NU' (�C�C7c�U' U�' C9(�(9C7C�' NU' C�U'' (M7C�' C7GC9C9(9C9
Y sT
C�' C9C�JC7NU' C9(�C'3NU' C�JC�' NU' C�' C9gUt�C�' C7U' (�(�' (�l7
C�C�
J J J J J J J J J J J J
J J J J J J J J J J J J
J
J7
JOc+)JS J JSJ(MOJS1i
JOJSJ0OJ0JSJCJGJC
JSJGJCJCJOJOJOJOJGJCJCJOJCJC
JMJ�JM
JG
JMJMJrar
JMMJStfjJSN�JNO
JpBIf�
JV'�(OI(ppQMNSNC..GCCCCC
JIO
JOOJSC
M
OMM O��O.r-�n.-O�OS.SSSSSSSS
MJM
NNMJ
pJ0pJO
pp
UJ�) S�mJCWJOi
0J01
aaOC{�
'
O MJYi
OJ
.JMM
�gQOgOQ99999QGCOCCCOCCCO
.�
Nrr Nrn.NnrnNr
aDOOaD OOD NOO OOD a00
p
SS SS SSS SSSNNI��N NOOON N NSSSSS$SS
N
p p Q pp p p
OSSoo S$oOS SS
,uoi. (nNa NNm�. NOOD�gr.M-SSO,7COrq
00
C�
R(NOINpRMC?RMM(?R MOOOOOOOC
GCOOC COOGO000 COOGGO000�������0.-«�fV
fO.tONtONN W fONNO
00
O
�ooc�oog'o,00�0000`b'ogo,00000$oS000,0000000$o.
oBSSooS0000000a$.8$�$S000�Soo��0000��oa�000
coocdod0000dgogqqqc?dqc�Qq6o
'00000g0goqoo'0000000000c000000coocco'cooc00000000c000ciooc000
�
pp pp op
GMDM(7�M NGMO,N(�NCMDM
��pp ��pp
00000000 OOOpO00000N00000�0��
e��} tt��
-0000000�����000000
pppp ��pp �O /1ppp� CCpp pp�� ((pp aapp CCpp ss��
0010000)000 �OO.OMI,ONN.�
-(o(c. co<q�u�co(q.(ooapaQooap0000000aoopooapapuicoQoapc00000codcoogggqoq.gc�iggqc?
,OOW001�1AOW
oo�or r�nono�aQoonoapaQooapr cN��
•.
y)
NYC �V NV`d �tN V'
O�.-0��0.-��0��
MMMlMiMrO�f O.
O0 NNCgq olgqWNAN�
NM
000 O�pO O
nnn rin wn O
co M MMMMM CO q M ..
0
mq-
000000000000
-N07000p�N
0
090990000000000000000000
0O(QOi(0RvCiCOoi000co0Ir aocq(Q0cVP Gigg
'
M NIn.M
,�f,
Nrti NfM�,NNN;fM�,NN n000000000
pppp ppf� pp�� pppp ee�� pppp ��}}
�:$i OOOM�WQrO
n I� connroaonli ad
,��000OI'�.'O
'ro<d( (etoma6romso(o<oro<c(dm(e(oNrom(c(d
�+i mco1� �77 }�} ui ofaal(�of aa
�qw, vvo�+r�vv9v7vvq. v<c2oR.R
Nf-F
.'N
.:
Z.Z > TA N F 1-> TA
Z !-f >...T A-NZZ A N!-1- A
Z Y TA NZZ MNF f- A
Z 1-f� Y.A NZ �; N!-F f. A'
Z
r;g
O
US
d,o
o
4
tz
M
N
CD
CD
cpn' _.
V
I
V
0
!
lZ
n
F
Josef Gartner GmbH Page: 24/54
GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S
Project:A C2 ` Structure: BenchmarkGestol[-Mows[ I Date: 08/02/2013
■ MFMRFRS - INTFRNAI Fr)RI-:FS
Load combinations
Member
NgBa
L6tfQn
Shear forces, [kN]
Moments [kNm]
-- - - -
No.
CO
Nb z
v
2 (Ctltj,
. ,.
N - Yy VI
MT My M=
Coilesponding Load Cases
51
C01
Min V
-0.47
-0.05
3.87
-0.00
0.05
0.01
LG5
Max Vz
-0:79
-0.02
12.24
0.00
0:01
0.03
LG1
Min V,
0.15
-0.04
-12.
-0.00
-0.00
0.04
LG2
Max:MT
-0.79
-0.02
12:24
0.
0.01
0.03
LG1
Min MT
0.15
-0.04
-12.36
-0.0
-0.00
0.04
LG2
Maxi,
4.47
-0.05
3.87
-0.00
. 0.
0.01
LG5
Min M
0.15
-0.04
-12.26
-0.00
-O.OD
0.04
LG4
Mex Ali}
0.15
-0.04
-12.36
-0.00
-0.00
0.04
LG2
Min M,
-0.47
-0.05
3.87
-0.00
0.05
0.01
LG5
51 '
9120
Max'N
012
0.07
13.48
0.00
11.25
0.06
LG3
Min N
-17.69
0.05
-13.63
-0.00
-11.51
0.08
LG2
Max Vy
0.72
0.07
13.48
0.00
11.25
0.06
LG3
Min
-0.86
-0.02
4.37
0.00
3.72
0.02
LG5
":Max W
0.43
0.06
13.57
0.00
11.34
0.06
LG1
Min V,
-17.69
0.05
-13.63
-0.00
-11.51
0.08
LG2
0.43
0.06
13.57
0.00
11.34
0.06
LGt
Min MT
-17.20
0.05
-13.55
-0.0
-11.41
0.08
LG4
MN x My
0.43
0.06
13:57
0.00
11.34
0.06
LG1
Min M
-17.69
0.05
-13.63
-0.00
-11.51
0.08
LG2
Max:Mz
-17.20
0.05
_13.55
-0.00
-11.41
0.06
LG4
Min M-
-0.85
-0.02
4.37
0.00
3.72
0.02
LG5
'0.01)
ex
.
2
Min N
-27.59
0.02
-3.47
0.00
11.25
0.10
LG3
F
Max;Vy
-8.17
0.04
0.08
0.00
3.72
0.03
LG5
Min V
16.33
0,01
6.98
-0.00
-11.41
0.04
LG4
MaxVz'
s16.87
0.01:
7.54
-0.00
-11Z1
0.04
LG2
Min V,
-27.59
0.02
-3.47
0.00
11.25
0.10
LG3
Mex m
-27.21
i 0.02
-2.95
O.OD
11.34
0.10
LG1
Min MT
16.33
0.01
6.98
-0.0
-11.41
0.04
LG4
Mex.My
-27.21
0.02
-2.95
0.00
11.
0.10
LG1
Min M
16.87
0.01
7.54
-0.00
-11.51
0.04
LG2
Max:Mz
-27.59
0.02
3.47
0.00
11.25
0.10
LG3
Min M,
-8A7
0.04
0.08
0.00
3.72
0.03
LG5
47,
258 80
Mdx-N
22Z
-0.02
2.13
0.00
3.65
-0.12
LG4
_
Min N
-56.8
-0.14
1.59
0.00
13.80
-0.31
LG1
e -26A1
0.04
1.80
0.00
7.23
-0.03
LG5
Min V
-56.85
-0.14
1.59
0.00
13.80
-0.31
LG7
:.
Max Vz
18.64
006
2.79
0.00
-2.28
-0.11
LG2
Min, V,
-52.46
-0.12
1.12
0.00
12.38
-0.31
LG3
pIUMT
-56.85
r0:14
1.59
0.00
13.80
-0.31
LG1
Min Mr
18.64
-0.06
2.79
0.0
-2.28
-0.11
LG2
Max`My
-56.85
-0:14
' 1:59
0.00
13.8
-0.31
LG1
Min M
22.55
-0.02
2.13
0.00
3.65
-0.12
LG4
Max•.Mt
-25.41
0.04
1.80
0.00
7.23
-0.03
LG5
Min M-52:46
-0.12
1.12
0.00
12.38
-0.31
LG3
53
1
14.66
-0.01
13.90
8.74
LG4
Min N
-15.61
-36.66
18.55
-0.03
-11.13
-22.08
LG3
MeX Vy
16.65
14.6
-23.18
-0.01
.13.90
8.74
LG4
Min V
-15.58
-40.3t
18.65
-0.03
-11.19
-24.29
LG1
Max>Vz
-15.58
-40.31
18.6
-0.03
-11.19
-24.29
LG1
Min V,
15.65
14.66
-23.18
-0.01
13.90
8.74
LG4
MaX Mr
-6A6
-19.97
-1.19
0.00
0.75
-12.05
LG5
Min MT
-15.58
-40.31
18.65
-0.0
-11.19
-24.29
LGt
;Maz.My
1&65
14.66
-23.18
-0.01
13.
8.74
LG4
Min M
-15.58
-40.31
18.65
-0.03
-11.1
-24.29
LG1
`Mak Mz
15.65
14.66
-23.18
-0.01
13.90
8.74,
LG4
Min M,
-15.58
-40.31
18.65
-0.03
-11.19
-24.29
LG1
53s
60:00
" Mak R
115111
14.48
-23A6
0.00
0.00
0.00
LG4
Min N
-15.38
36.90
18.56
0.00
0.00
-0.00
LG3
MaXVy
°; 15.71
14.4
-23.16
0.00
0.00
0.00
LG4
Min V
-15.30
-40.61
18.66
0.00
0.00
-0.00
LG1
Max'Vz
, -15.30
-40.61
18.66,
0,00
0.00
-0.00
LG1
Min V,
15.71
14.48
-23.16
0.00
0.00
0.00
LG4
Max';MT
-15.30
-40.61
18.66
0.
0.00
-0.00
LG1
Min MT
15.30
-40.61
18.66
0.00
0.00
-0.00
LG1
Max.My
. 15.30
-4061
18.66
0.00
0.0
-0.00
LG1
Min M
-15.30
40.61
18.66
0.00
0.0
-0.00
LG1
:Max"Mz
15.67
11.06
-23:05
0.00
0.00
0.
LG2
-15.30
40.61
18.66
0.00
0.00
-0.00
LG1
58
C 1
4
-,.0:.
Max;
1
0.11
13.74
0.
-26.78
-0.13
L
Min N
-13.27
0.44
-13.59
0.00
27.39
-0.26
LG1
MaXVy
-13.27
0.44
" -13.59
0.00
27.39
-0.26
LG1
Min V
16.52
0.11
13.74
-0.00
-26.78
-0.13
LG4
a
'Max V=
1552
. 0.11
13.74
-0.00
-26.78
-0.13
LG4
Min V,
-12.93
0.35
-13.66
0.00
27.39
-0.27
LG3
Max Mr
` -12.93
0.35
-13.66
0.00
27.39
-0.27
LG3
Min MT
5.93
0.29
4.11
-0.0
7.96
0.01
LG5
Max M,
. -13.27
0.44
-13.59
0.00
27.3
-0.26
LG1
Min M
15.52
0.11
13.74
-0.00
-26.78
-0.13
LG4
Max.MI
6.93
0.29
-4.11
-0.03
7.96
0.01
LG5
Min M,
-12.93
0.35
-13.66
0.00
27.39
-0.27
LG3
59,
215
• `Max'N
1"6.
0.10
' 12.59
-0.00
22.72
-0.16
LG2
Minty
6.41
0.27
-12.65
0.00
23.30
-0.12
LG3
MaxVy
T
0.34
; -12.59
0.00
23.31
-0.11
LG1
Min V
15.96
0.0
12.59
-0.00
-22.73
-0.17
LG4
;.
.'.Max Vz
16.38
0.10
.- 12.5
-0.00
-22.72
-0.16
LG2
Min Vz
6.41
0.27
-12.65
0.00
23.30
-0.12
LG3
® RFEM 4.10.26M - Arbitrary 3D Structures solved using FEM www.diubal.com
co w
C
N
r
N N
J
o c
o E
rn N
W
O
N J
0
Z
Y
LU
0
i
Z
.Qw$
o
m
�D
= N g
0 U.
to co
06
� n
O�
m
c
N
�J
'q' U
O
d J
NZN
F-
Z
m
w
m
w
U
qc
o
t� qq
C7-j
-1-j-A-i
C U' C7 C7 C9 U' -j-jC7 C9
9-j-j-i-j- U'
r C7 C9-iC7-iU' C7-1 �-1
J J J J J J
-j-------tj-j-j
J J J J J J J J J J J J J J J J J J J J J J J J
J7 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J
-J j-i -i-i -j-,
J
J J J J J J J J J J J J J J J J J J J J J
NN r n
r0 r r O r
0 0 0 0 0 0� 0 0 0 0 0 0 0 0 S O 0 0 S 0 0 O
O O S O O O O S O O O O O O O O O O O O O O O O O O O O O OO O O O
0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 8 0
Ng9gqqqq9999991qqqqqqqoqqq�qq�qqqqqq�?ggq9qqqqqqq9qqqqqqqqqq45'�?4R4444449�49444R5'R94o49004
..
OMr MM
N.r
rrr NO rr rr rr NO rr r� NO r9
rr0rr0NO0rrrr rr 0QMM4'f to M Mrg
VC'1On9Oq OoV�qoaC� �go�c.Cy�
MMNmn
N NN99090000000g0090999C>99000090ooggqcqqqoggqoc?ggogogogg
'
giMf
oS oaO{
osMh
oO7 gO oOO o•Cf
ggoogo
C
0
op$8o8o$8$08
p$8oS$888S80.$$080808$8
888o88$S$8o•88$8$S$oo8 S888p888$8op88S$588885
08
F0490ccgoogoocoq0qoo0ggqq00000cqc,000000gogg0000coo0oci00000oo900990900999oo090990099990099
mmrnrnma
mnlnOnN
nmrnnmmnnn!rmn�
201Nn No(4M rz.,O:929OrrO1MmN07rQ�t�p1MDNC1:m.-rOfOMp(0)on�tOp MmoIDpnOmMtOnotOfOlO<mONrmm
<GNCON�NmtfpO�Nn an nn
Nfh NfV f?cVr'MM�M(7-fM�MM��?MMM�Mpj
fM �.M tM�MColt7vM
It'T 'To) tm MT7
' =
nomom
CIA p N 0
gpp aanmongo��ggrCi�c� �p r�p
O b O O r 0 O r 0
m�nn�n�nnm�nninn n�nnn�mn�na} n Mimm�M�nua
0 O O O O O O 00 O O 0 0 0 0 O O O O �:O O OO O O O
NN ` �`8�`goo�`8`�oro�`8�0
00 O
yp
g
00000o'ggqqqqqq999q9qqq9qq9999990qq99099099909qqq0g90999og999099o9
99999ggqq4qq9qqqqqq"q
LL >'
-01*=a
�.
N;.
m:rm
YOD�OfmO
N �� m<O�pN m N {pm�p p{�pp QpmmvN
n l9n rlhYrnnOnaT. O.n �tS
maf.MNV NM n NMOn NOMm Or OlofO.W r'm
mn v, goo nogn st0<mY nmtO er n�ngaomnrO Olnp rO.NNC.
NN OC.N mmpmNOmrnn pn`r Ofn
NOnCppN mnMtfimvmmMYm
r9
mnn'.n 10
_'rrM
CCtOCI+>.V'�t7C�V':m Mt�i tG Pi �f(G �D f�>N<C lC
'Nl a-O>fC l7.M a� thm �lM aG �fV fC.n l�tC fV f�I�NfGr V`.q'et 0'Q V' C�:v Y1�hCAR(O:Ih
h-�C Oi�oa'15!0
Zr.
e�'.r r �-r N. N'r NN, N N
NN N -
i�
C:,ni�g�c.`L a��C�l�, i�i�r22r C,'-..XC1�i
+N
iN��`L'1�r2C�%�^�N�2 C�
cfxp
IS
1
1 Y(
z"
o
0
0
zumi
m
m
g
s
8
a
0
9
t`C1 r VI
M C
N ~
C
R
DAD Z
E
N
C
R
c
a vi
o
M
}
ffi
Z
Y
-j
MWS
Z
�D�
L CJ�
LL
C C
00 O
/It^li
vN�
O
m
�4 LL
d C
a LL
Q
Z
k
z
t
LL
LL
U
0
c
v
0
U
MUC�JC9
u�
MU' C�C�C�C �' C�NU' C7C 17(�' t7C C7C� NU' C�lC7C7C7C9
C7NU' C NU' C9C�C9C C�/C U' C9�UC�' MU NU' C7- CJUN'
c-7C�(-J-1----CSC-C�CJC-C��rUC�NU'
JJ J
J J J_J J J J J J J J J J J J J J J J J J J J J
-j-j-j-jC
J J J J J J J J J J J J J J J J J J J J J J J J
-j-j-j-jt-jt-J(9C-JCJC-J`(3(-'
J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J JJ J J J J
N
O 0
t6rls Me�}l ..pp lnr Nr Ml6h�s Nt6r�s Nrl6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
06f0p1 OMOO61 MMISM^�Ml6MMM MrN�C1
O r p r 0 r r O r O r O r r O r r r O r
l/)�6y� �1 Nr1sNM NNNNV'NNa sl rl6 l6ls16 l6 i17e-
O 0 0 0 0 0 0 0 0 0 0 r r O O r r O r r O r 0 0 0 0 O O O O O O O O
N90999999999999999999999999q'oc00000000o999999999999�?99999999999999999499999999999999999
.S
Y
_sf
MrMOfn
pfM MM MM 61 Mhaaf� E�pppp CO
cm vnv
Oln�nvi hO1h NOD�aDVOD V'N aoNao
NrNrN NNq . �O. . . . . pppl��pcppvn�p
0O 000 SOOOOS Mrr r01 Of
Oaaf� ppn 'Ch raoNr rN CD .ga{cq Os� p •f
NaO eF aDY.N tON�rOV'�-rat O.r-�Or O00 cO a0a00 �aD�V �aD�
dgq.'ri��ciul�ls�-9-.
6g;ai6T616 0iC161TTT
ogOgOOOOgoac?gmTmTgc?Mc?C2MT06/d6gi6cj6f6ic?64�6
q�U 666L?V(? !1 C OTTMTmgcVMTC?T
�.
SSOOOOOSS
OSOOSOOSOSOOOSSOS
00000000000000000�000�0
OSO SSOOOOOS OO S000 OOS OOOSSSSO OSSOO
�oqoggqqoqoqooggqqoqoqoqocQqciqoqdqooqoqdcqdoqdc�ogoqooqdddd6dqoqqqqcq9996d.�ogogooqoqoc?goqo
..
ODlehr
rMn1� 1. MrM pp/60OD h nOfaaOf
Oi� l(�C�n�<C rCV ft�G OrrCV ��^NIA Ntn��f�O�1?
4.:.N93
CMcorNnranc?0nrN 1-r10
MN n�1
"I�lM0�-l77
cN
04088NN
0
Ot6a1[
bU�e
rl1p OO.
rfV�l� rtVO1� N1n��N��tsf�Nu'1�.�
Cp.M
Cs rrN��{{
:cco?;M:
MMN�-M
N
eClO
1OAD
coNNc.,MNNnaprm6frtnrin...Nt?ft?n.Nn1.i-
uCOr70r.r0 /?-Cr.O-QGOq 00O0rOMt6
ra.b MYr Is �If�ls rlf)
�'
`8,�`$,o�o
c�$1,�0�6o1og',�ga ogoSogg�
go oSoSo$S$$$ 8SS88SSSSS o$oSSoSSS
r
4Rggq�ic24oqqqc?ggo4ogo5i000cfoQ
_�ro����o�o��0000��00000
Oogcoocgogoqoogoqo4cSi000goc�oqodcgoqqqqqqqqgqqqqcooqcgooq000
m'
'r
61r
tCpp ee}}Of tOr V'iD� MrO1M COMt6�p N.
aNV;O1NTNaD,Y;hVaD�-:Nr�6N.N
Mr::r �V rt6 Nor. 61N6/r M:r 6f rCMy:CA
Oh01le0h06f WnaD61�:rMO6Ya001 U3NOD�
:CD M1s M.Vy� tCppa CD CO fs co:CS CO t0 tcpp Oar hp>.a Vn
CO'prN�tlfN rcO hCO.rleisa-COr00 �ODY.%VV3 -�u`ti
o�tM.nMNGna?ri
cl:vi tMNCV t�O'CC O r-6fV 01GCV tC
'..r rr.r r r +NN:N Nam N N;�
1� (�f cQ <P I�CVI� t(�I.fQtf�/CV fG'h^tG �f>tC 1l7 (O'cO Y1 N
rr �- r..
CV 1�o w r-: dfV6 (6 CV(s OY 4.00 Y_O YO:vgf�fCg6rl tOgcO
NCV CV. 'Nr .�. N,N NNN NNN ;N .N
Z'
. . ire. .Cc. �:. �.�
.,
Cc
i'i��1(Zi!.�i �N7';J'j�rL'�
!e ice i� >�
` e$ �J e ! !. !!
Ti�SNi��L i'LG�;S�Z y>��N��4�'c j�ZZ�i�lN�iG'Lii
C.
C C
.� E C C_'r C:Wf� C� �... G G.
C C C C C ,!1O C'.: '.. -Sig?� C'
g
g
g g
{
i
M
lZ
O
_
g
O
3
3
V
N
O 3
0
A
o
'W
a 77p
..3
3
33333 3 3' 3 �3�3 3 3 c mcc3 _3
m3 5 3m9x�3K3.x�°�C�p3:�C3IX5ARI�T-WV
C333 3 �3333:3 3 g
�C3'x��g;�-�3��+33�t5�3�CSx3.�c3
3 3 3 'g 3333 3,
�'33SmCfwcxr'.F33 m3�3m3
�.
3x 9 Fmk
' 3�C
3:x
a
<.Z
.3cc33G«<ZZN3v3$�3�3�NGG<G'�G,Z
� 3��3`�G,G
G<Gz�Z
3333� N�v�4«2ZN3's3s��<VGKCCYZ
;
�Cn�WO�ALS7C�ApOAG�tpOD
GON-4V NO4 N V VOW 0.0OWM0VWVVWV
+OWD�ApOmAV,(OTOWOV�1
� WI<
Op�p�1lO9fb.. ONONVNONONVN bN-
W �OV' �CoOApNSpAo V
W
�pA
OOVW+-V+A-
VDVNpVONSO
. . .
AOVwpOA�OANV+
m4.Af (O.P.P to tTi:NWOt(W7�+tW0-A+CO7iW
O000popbppbbpbpbpbpp666666bpb666,66pbb_bbbb6bpbb_bpbpbbbbp6
sG
aOD.P OONOw(hO.PwUOi�wfOJIA
V�'tOJIV-�fTN OV+OVCOn�00fNOfh (Ji S'+ f71
popboGob0000boopopobpoo6000boopopoop0o0ooc0o0o0oo066o6o6000
Of 0DN010DNNS NOIWVO1w Vww S.OV w01
lONSO UtNCOA<OOO.:tONSSS�SS O+S:� SS
�.
W L1W
W-.WWO+WWWWO-!L.1WOWW+Lppi�W+pWO��:LJWjpLpJ��W W.A+WDPW+N�JA:+IJA�
W+WW+IJL..IW:+WL7WW+(JW+WL(�/W+'W4W-4NV
�NAVbf (A7�LN7NGN�NA(t(Tn�O+W)
N
VVp<WOMW(WNO�
w++
WONNNSVOAOA
pVp (N(�,D�V.VppNNA+NAIT O+Opp
wCOm
6o'66o6600bbo6ob6ob6006bo6obbboboobbo6
6bo6boob66ob66boboo666obo6ob6obo600bo6ob6obo6006�
$$$S$$S
0SSSSSSSSSo SSS'00'8' S o8S8SS
SS$o 8SSSSSSS`b'S oS$8S8SSwo8boSSwSSwowSS
�$SSSSw
3
3
600�D600w6�Doo66�Doo6o6opo60066opo6o66
iOOpONofOOptOONpIOfpOIOOotpOiOlOpNp
�O�CWTOWWOW
p66o6600b66o6
W(WTOWtWd-W+tON�S�fO+tO CNO�(NO-fT�.�(T+..��(T��
poobOopopbObpop000pbOowbbbob�otowbb4b7Wob<T��a1TcnSlTvnln+plTN-A
Aw OAWfT(11A W.P (71AA0 OAAO AAW
W~WW WWWW WWW.PAAA AA OA OAAA.
3
3
66b6ob6o6b6o66bbo6bobbbo666b6666b66b66
bbb6b6bbb666bbbb666b66666bbbb6666b66666666666666"
000c
NNNN
oogoocg0000000g000c000c 000c00000'
N N+N NN NN NNN NNN +WN+ NW+NW
ocScoogcc000000000cooc
NN NNN WNW NN+NNN+NNN
w oo�o�0000000000000000
+�JI Uf+Ot(T+ +iTN+(T MOMU1+
rrrr(r(�rrrrr,r,�rr]](r(-�rrr(r(-�(nr,(r(-�rrrrnnrrr(.]rrrr-r[;-�l-]rH�r']rrrrr�ryr(r(,]]rrrrrrrrrrrrrrrrrrrr((r-'�rrrr��r]]rrrrrrrrrrr��r]]�r�]]rnnrr.
G��A�+i�Fii��Nl+(JtAN�biAFON�Z��FJN���IiITNih�
�N��AN��AZIA�(�T
n
p�
n
m
0
a
■
z
Z
n
v
O
C1
.Z
7
N
o
N
f6 COD
WOG)
?ODm
-n T
N
�c N
C
C YI
m
ma
SZ=
m
Z
w'
O01
;u
3 Pt
D
m
v
z
CO)
3
3
C
0
S aD
J
N
'J
V/
co C
N
N
J
N
o c
O L
c
c
M N
W
cc
m —
a co
wl
o
Z
LLI
Z_
LL
Eat
�Dn
a. (9
� N
orn ,
''Mn COO
vN�
O
7 g
m
'C
l6
R
U
0
a
c
((�j�N1(Q�N(C�J
t0 f(f(���(qJ f�yJ ttt[[[}}}�(Q�Mt(�� (q�• Of7 (gJNN (�J•l(�`�
JJ��J'J JJJJ
5(�� C�`�(q� u) N(s� ((',��NN q�`
NN(((���N(('j7 NNl(',��N NNNt(��((�JN((�N
�p�J J7J J�JpJ J�IJJJ
Nt(f�� t((�
JpJ
.�.IJJJ�J
Jp�p�JJCJppJ�CJDpJJJ�JJp
J���Jp,JJJJJ�JJ7JJp
MJJ�JJJ7{{
OOO OOOOOO�O�SOOOSOO O
. . .-. . .
CJJpJ'pJ'OJJJJJp
�SG.M SN NOSM OSOSOSSSSOS
S$BSSO
�
gg5'qgqq44g�?gqqgqqqqqqq
,000OOOONOq . . ..-�n-,O�
ggqqgqqqgqqqoqqqqgoqqoq
,$0.8SO8000
00000000000c� v#96ul6du?uf660
o0000000000000000
m'Ol'OO MMSMa�--�.�-0��.�-:O.^-�0.�-
O M M
M MMM�MM•-.M lhM�oDn MM�rCO P91�-aD 1�+S
p
SOSOSSO S�NNb NCO NNOlOf1NS
'GOGOOCO0000.�.-.-.�
ppp p p p
S S000 S0 OS SOSSSS
9900909gqoo000qqooqoo
cVNgNNNgwNgcNNnNthriOVNhMNnN
N fV NNNN NN N
��q.- � r•OOOOOOCOOOOOOOCO00
C
g
888 0008g8888S$
S8oSo,c88c8So$oo$,o88oeoo8o8800$cSo8o800S
O$oeoS88$o8
o8$$g8o$o88
Fgg0000oqoqoqoqooqqoqg'odgdooggoqooqoqq0oqg0qo'00000000000gggogqoqqqqq
„088o
0000d000000000000
ccn oOconmt0 .-n.-.-.-nn��n ��
Nnnn Nnn NnmaDm MmOD OOMmOOMm
tOpp •�Vp n ��M tt�O�O) OD �Opp Of0pppp c0 00
-OMtO M �OOStpb�Ou)m10N�u1
NN�Opp N<ONNN NNNNNN<O s��••NNCO �(ppN.y}OO��V'1nh�f10
000000000000000000000000
0 N NN .-
-es
��0000000 �
�O'>Oj Ode-{j. o.-mmTM -M Cj':6
C4 6cd N w r�- ON pr w NOON m NN NNM N No"
0 w 00000.0 o o o o o w wO? w. tag waDGO w
OO do 0 o 00 oo a qqq gqq
��pp OOpp .e�}�u��Opp 88
00000 n00....'
g0oocgoog0000q000qoogo
-m�On`-co 1nM
vo�nmoco a000co Ln
OO
o0o00000000gc?ggqqqqgqqg
�Mn MNuM� Nco ca Oa�ir��n rnr�'mrnrn. . . rn. u�. m. rn. NnN�NNnurn)
momm!a !6-- �9
MMNMNMcM
�Oppoo 0000 pp SoO
q�4S ooqS:o
��ttOpp
LL
�OMNNDW to gW (WO MP10NpNOS0Np
m
0,2NFn02�
000m0000t�O 0tO O0tGD�a!7:cOiC{
.QlO7.0OtG00OtGp�OtO{
OMYmIMY�`' Nn<NYti .t.OM�-�'�ef7-LtdM-eA�7•lOO�Vl.7-
OV N;
—IMP
-.•N�ON�v.tG-<O OG iGm0tC
OOmOO
in'rp,:.nN1.D,O9^QN(4C
'
N AlFcf cY.CYi cNZZ N !L-l1- T!> N
»>gggg
,Z T i N ,.�F+�Ch TC>.c�N2zz T >� N �.'.F f N
��i�ggg 6C `%��� gg'ig;e
;ZnZZ
>i?�,
..,� ii�,g»'»ggggg
C C ff
OOP c'(X
_ X
wig �gW� g
Ci C %,ssl r-
g/g0 g'Rg l6g gg gggg{7g g
C g )C C' C
ggg X'SM .gg �gg'16
.E
gglgOg gg gig
g i
g g
`S�
f
it jl
9
�•,
co
o
i
o
iZm
2
8
J'
ec
Josef Gartner GmbH Page: 29/54
GartnerstraMe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S
Project : 1G2 . `.` Structure: BenchmarkGestsll-WElowel
■ MFMRFRS - INTFRNAI Fr1Rr..FS
Date: 08/02/2013
I nari rnmhinntinnc
Member
Node
Forces [kN]
Moments [kNm]
_ .....
No.
CO
Nod
X].x ]
_Shear
N
Vy VZ'
Mr My M,
Corresponding Load Cases
86
C01
Max'MT
34.33
-0.00
-0.05
0.00
0.00
0.00
LG1
MkiMT
_
" `34.33
-0.00
-0.05
0.
0.00
0.00
LG1
Max,My
34.33
-0.00
-0.05
0.00
0.
0.00
LG1
Mlii My
` 'X33
=0.00
-0.05
0.00
0.
0.00
LG1
Max_M,
34.33
400
-0.05
0.00
0.00
O.OD
LG1
- 34,33
-0.00
-0.05
0.00
0.00
0.00
LG1
87
1
84
9.00
Max N
4.9-74-0.00
1.27
2
Mtp,N
1.
9.31
10.08
-0.00
-1.59
3.35
LG3
Mpx V
-0.55
9.7
-10.05
-0.00
-1.58
3.15
LG1
Min. Vy
- 4.34
-6.72
7.96
-0.00
1.26
-4.75
LG4
Max V,
4.97
-6.37
7.
-0.00
1.27
-5.00
LG2
Mot :Vz
-1.00
9.31
-10.
-0.00
-1.69
3.35
LG3
Max Mr
1.74
4.53
-0.10
0.
-0.00
0.29
LG5
Mki'MT
4.97
-6.37
7.99
-0.00
1.27
-5.00
LG2
MGM
4.97
-6.37
7.99
-0.00
1.27
5.00
LG2
"Allin'My
-1.00
9.31
-1,0.08
-0.00
-1.5
3.36
LG3
Max M
-1.00
9.31
-10.08
-0.00
-1.59
3.35
LG3
MimIVT
4.97_
-0.37
7.89
0.00
1.27
-5.OD
LG2
66
144:20
Max N
4.94
-6.85
8.01
0.01
12.80
4.53
LG2
Min N
-1.07
8.95
-10.08
0.04
-16.13
-9.82
LG3
Max V
-0.64
9.31
-10.04
0.04
-16.07
-10.61
LG1
Mki'V
4.32
4.08
7.98
0.01
12.75
5.19
LG4
Max V;
4.94
-6.85
8.01
0.01
12.80
4.53
LG2
MinrV=
-1.07
8.95
-10.04
0.04
-16.13
.9.82
LG3
Max Mr
-0.64
9.31
10.04
0.04
-16.07
-10.61
LG1
:.
Min: MT
1.46
4.06
-0.36
0.0
1.34
1-1LG5
Max My
4.94
-6.85
8.01
0.01
12.80
4.53
LG2
:Min, My
" -1.07
8,95
-10.08
0.04
-16.1
-9.82
LG3
Max M,
4.32
-7.08
7.98
0.01
1
12.75
5.1
LG4
-0.64
9.31
-10.04
0.04
-16.07
10.61
LG1
88
Col
85
0.00
Max
.04
-12.26
0.00
-0.00
-0.04
L
Min N
-0.79
0.02
12.24
-0.00
0.01
-0.03
LG1
Max, Vy
0.15
0.
-12.26
0.00
-0.00
-0.04
LG4
Nlin I
.0.54
-0.11
3.88
-0.00
-0.04
-0.00
LG5
y
Max V,
-0.79
0.02
12.24
-0.00
0.01
-0.03
LG1
Min' VZ
"' 0.15
0.04
-12.30
0.00
-0.00
-0.04
LG2
Max MT
0.15
0.04
-12.36
0.0
-0.00
-0.04
LG2
MInMt
-0.79
0.02
12.24
-0.
0.01
-0.03
LG1
Max M
-0.69
6.01
12.14
-0.00
0.01
-0.03
LG3
Min. -
-0.rA
-0.11
3.88
-0.00
-0.04
-0.00
LG5
Max M,
-0.54
-0.11
3.88
-0.00
-0.04
-0.
LG5
MurM
0.15
0.04
-12.36
0.00
-0.00
-0.
LG2
86
91.20
Max N
0,7
-0.07
13.48
-0.00
11.25
-0.06
LG3
Min N
-17.6
0.05
-13.63
0.00
11.51
-0.08
LG2
Max Vy
-0.73
-0.0
4.38
0.00
3.65
0.02
LG5
Min' V '
0.72
-0.07
13.48
-0.00
11.25
-0.06
LG3
Max V;
0.43
-0.06
13.57
-0.00
11.34
-0.06
LG1
".
Min:V,
-17.69
-0.05
-13,
0.00
-11.51
-0.08
LG2
Max Mr
-17.20
-0.05
-13.55
0.0
-11.41
-0.08
LG4
MinMT
_
0.43
-0.06
13.57
-0.
11.34
-0.06
LG1
Max M
0.43
-0.O6
13,57
-0.00
11.34
-0.06
LG1
Min My
-17.69
-0.06
-13.63
0.00
-11.51
-0.08
LG2
Max M,
-0.73
-0.03
4.38
0.00
3.65
0.02
LG5
-17.20
-0.05
-13,55
0.00
-11.41
-0.08
LG4
9
COI
86
0.00
Max N
16.87.01
7.64
0.0
-11. 61
-0.04
LG2
Min N
-27.5
-0.02
-3.47
-0.00
11.25
-0.10
LG3
Max V
-6.86
0.04
0.82
0.00
3.65
0.02
LG5
Min`V
27:59
-0.0
-3.47
-0.00
11.25
-0.10
LG3
Max V;
16.87
-0.01
7.54
0.00
-11.51
-0.04
LG2
;Min V,
-27.59
-0.02
-3.47
-0.00
11.25
-0.10
LG3
Max MT
16.33
-0,01
6.98
0.0
-11.41
-0.04
LG4
Min Mr
-27.21
-0.02
-2.95
-0.00
11.34
-0.10
LG1
Max M
-27.21
-0.02
-2.95
-0.00
11,34
-0.10
LG1
Min My
16.87
-0.01
7.54
0.00
-11.51
-0.04
LG2
Max M,
-6.86
0.04
0.82
0.00
3.65
0.02
LG5
=
Min'M'
=27:59
-0.02
-3.47
-0.00
11.25
-0.1
LG3
66
258.80
Max f3
22:55
0.02
2.13
-0.00
-3.65
0.12
LG4
V MIn
-66.8
0.14
1.59
-0.00
13,80
0.31
LG1
Max V
-32.21
0.31
2.53
-0.00
9.11
0.00
LG5
Min;Vy
22.55
0.0
2.13
-0.00
3.65
0.12
LG4
Max V,
18.64
0.06
2.7
-0.00
-2.28
0.11
LG2
Mk► V=
-62.46
0.12
1.12
-0.00
12.38
0.31
LG3
Max Mr
18.64
0.06
2,79
-0.0
-2.28
0.11
LG2
Min MT
66.85
0.14
1.59
-O.OD
13.80
0.31
LG1
Max M
-56.85
0.14
1.59
-0.00
13.8
0.31
LG1
Min My
22.55
0.02
2.13
-0.00
-3.6
0.12
LG4
Max M,
-52.46
0.12
1.12
-0.00
12.38
0.31
LG3
:Ulft Kg-
32.21
0.31
2.53
-0.00
9.11
0.001
LG5
23.18
0.01
8.74
Minh
-15.61
36:68
- -18.55
0.03
11.13
22.08
LG3
MaxVv
5.65
14.66
23.18
0.01
-13,90
8.74
LG4
Min
-15.58
-40.31
-18.65
0.03
11.19
24.29
LG1
Max V,
15.65
14.66
23.18
0.01
-13.90
8.74
LG4
Min
-15.58
,40:31
-18.
0.03
11.19
-24.29
LG1
Max Mr
15.58
40.31
-18.65
0.0
11.19
24.29
LG1
MlnI M.,
15.82
11.29
23.07
0.01
-13.84
6.70
LG2
Max My
-15.58
-40.31
-18.65
0.03
11.1
-24.29
LG1
® RFEM 4.10.2680-ArbW.V 3D Structures solved using FEM www.dlubal.com
Josef Gartner GmbH Page: 30154
GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S
Protect 4C2„ Structure: BenchmarkGeste11-V3Dowel I Date: 08/02/2013
■ MFMRFR.q - INTFRNAI I=OPr'l=lR I nart rnmhinatinnc
Member
No.
CO
Nod
N
rLatstion
>x[j
Shear Foiaes [kN] `
N Vy Vz
Moments [kNmj
MT My Mz
Corresponding Load Cases
90
C01
Min M
15.65
14.66
23.18
0.01
-13.
8.74
LG4
Max Mt
15.65
14.66
23.18
0.01
-13.90
8.74
LG4
Min M,
-15.58
-40.31
-18.65
0.03
11.19
-24.2
LG1
50 00
Max;N
15.71
14A8
23.16
0.00
0.00
0.00
LG4
Min N
-15.38
36.90
-18.56
0.00
0.00
0.00
LG3
M6x;Vy
16.71
14.40
23.16
0.00
0.00
0.00
LG4
Min V
-15.30
-40.61
-18.66
0.00
0.00
0.00
LG1
Max Vz
15.71
14.48
23.16
0.00
0.00
0.00
LG4
Min V,
-15.30
-40.61
-18.66
0.00
0.00
0.00
LG1
MAX MT
-16.30
-40.61
-18.66
0.0
0.00
0.00
LG1
Min MT
-15.30
-40.61
-18.66
0.0
0.00
0.00
LG1
Max My
-15.30
-40.$1
< 18.66
0.00
0.
0.00
LG1
Min My
15.30
40.61
18.66
0.00
0.0
0.00
LG1
ulaji';ti�iZ
-_15.38
-36.80
-18.56
0.00
0.00
0.
LG3
Min Mz
-15.30
-40.61
-18.66
0.00
0.00
0.0
LG1
GRV55-5EGTIVN5
- INTERNAL FVRGES LOaa comolnations
Member
Not1
ocatkxi
Shear Fpross [M)
Moments [kNm]
Corresponding Load Cases
No.
CO
[40
`r x[an]
;;,
N.; Vy , Vz
MT My Mz
Section
No RIiO
200x100x6.3`
48
C01
48
0.00
Max N
16.
-19.93
10.02
0.00
0.00
0.00
LG1
Min N
-16.02
31.65
' -8.02
0.00
0.00
0.00
LG2
Max
-16.02
31.66
•8.02
0.00
0.00
0.00
LG2
Min,Vy
16.08
" -21.21
10.06
0.00
0.00
0.00
LG3
Max V,
16.08
-21.21
10.06
0.00
0.00
0.00
LG3
Min V.
-16.02
31.65
-8.02
0.00
0.00
0.00
LG2
Max MT
16.09
-19.93
10.02
0.00
0.00
0.00
LG1
Min MT
16.09
-19.93
10.02
0.00
0.00
0.00
LG1
Max M
16.69
-19.93
10.02
0.00
O.OD
0.00
LGt
Min>My
16.09
-19.93
1 10.02
0.00
0.00
0.00
LG1
Max M,
16.09
-19.93
10.02
0.00
0.00
0.00
LG1
Min M
16.09
-19.93
10.02
0.00
0.00
0.0
LG1
49
15.80
Max
16.
-19.99
10.02
0.00
1.58
3.15
LG1
Min N
46.04,
31.59
-8.02
0.00
-1.27
-5.00
LG2
Max V
-16.04
31.5
-8.02
0.00
-1.27
-5.00
LG2
Min Vy
16.08
-21.25
10.06
0.00
1.59
3.35
LG3
Max V,
16.08
-21.25
10.06
0.00
1.59
3.35
LG3
Min-W
-16.04
31.59
"-8.02
0.00
-1.27
-5.00
LG2
Max MT
-16.04
31.59
-8.02
0.
-1.27
-5.00
LG2
1NInMT
5.38
-3.70
5.59
O.OD
0.89
0.58
LG5
Max, M
16.08
-21.25
10.06
0.00
1.59
3.35
LG3
.,Min. My
-16.04
31.59
-8.02
0.00
-1.27
-5.00
LG2
Max M,
16.08
-21.25
10.06
0.00
1.59
3.35
LG3
Min-M
-16.04
:31.59
-8.02
0.00
-1.27
5.
LG2
50
C01
49
0.00
Max N'
4.97
-6.37
-7.99
0.00
-1.27
5.00
LG2
MWN
-1.00,
9.31
10.08
0.00
1.59
3.35
LG3
Max V
-0.55
9.79
10.05
0.00
1.58
3.15
LG1
'
inVy
4.34
-6.7
-7.96
0.00
-1.26
-4.75
LG4
Max V,
1.00
9.31
10.08
0.00
1.59
3.35
LG3
Min;V=
4.97
-6.37
-7.99
0.00
-1.27
' -5.00
LG2
Max MT
4.97
-6.37
-7.99
0.
-1.27
-5.00
LG2
"Min MT
0.95
4.03
5.53
O.OD
0.89
0.58
LG5
Max M
.1.00
9.31
10.08
0.00
1.5
3.35
LG3
Min My
4.97
-6.37
-7.99
0.00
-1.27
5.00
LG2
Max M,
-1.00
9.31
10.08
0.00
1.59
3.35
LG3
MInM'
4.87
-6.37
-7.99
0.00
-1.27
-5.00
LG2
41'
144.20
Max
4.94
-6.85
-8.01
-0.01
-12.80
4.53
LG2
Min N
-1.07
8.95
10.08
-0.04
16.13
-9.82
LG3
Max V
-0.64
9.31
10.04
-0.04
16.07
-10.61
LG1
MInVy,
4.32
-7.08
-7.98
-0.01
-12.75
6.19
LG4
Max V,
-1.07
8.95
10.08
-0.04
16.13
-9.82
LG3
-: Min VZ
4.94
-6.85
- -8.01
-0.01
-12.80
4.53
LG2
Max MT
4.94
-6.85
-8.01
-0.01
-12.80
4.53
LG2
h MT
-0.64
9.31
10.04
-0.04
18.07
-10.61
LG1
Max M
-1.07
8.95
10.08
-0.04
16.13
-9.82
LG3
Mln'My'
4.94
8585
`-8.01
-0.01
-12.80
4.53
LG2
Max M,
4.32
-7.08
-7.98
-0.01
-12.75
5.19
LG4
"`Min%M
-0.64
9.31
10.04
-0.04
16.07
-10.61
LG1
53
C01
47'
6.00
Max N
15.65,
14.66
-23.18
-0.01
13.90
8.74
LG4
Min N
-15.61
-36.66
18.55
-0.03
-11.13
-22.08
LG3
Max V
15.65
14.66
-23.18
-0.01
13.90
8.74
LG4
Min V,
-15.58
-40.31
18.65
-0.03
-11.19
-24.29
LG1
Max V,
15.58
40.31
18.
-0.03
-11.19
-24.29
LGt
Min:Vz
15.65
"-14.66
-23.18
-0.01
13.90
8.74
LG4
Max MT
5.16
-19.97
-1.19
0.0
0.75
-12.05
LG5
hVi
-15.58
-40.31
18.65
-0.
-11.19
-24.29
LG1
Max M
16.65
14.66
-23.18
-0.01
13.90,
8.74
LG4
Min`My
' >-15.58
-40.31
> 18.65
-0.03
-11.1
-24.29
LG1
Max M,,
15.65
14.66
-23.18
-0.01
13.90
8.74
LG4
Min<fAi
, -15.58
-40.31
18.65
-0.03
-11.19
_ -24.2
LG1
53
66.60
Max NN
15.71
14.48
-23.16
0.00
0.00
0.00
LG4'
Mlik N
L15:38
-36.90
18.56
0.00
0.00
-0.00
LG3
Max V
15.71
14.48
-23.16
0.00
0.00
0.00
LG4
® RFEM 4.10.2680 -Arbitrary 30 Structures solved using FEM www.diubal.com
Josef Gartner GmbH Page: 31/54
Gartnerstralle 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S
Project: AC2 - Structure: BenchmarkGesteil-Mowel I Date: 08/02/2013
0 CROSS -SECTIONS
-INTERNAL
FORCES Load combinations
Member
Notic
ipmt{ot1
Shear-Foross {kN] ;
Moments [kNm]
Corresponding Load Cases
No.
CO
Nor
X{Cni
N 1/y V=
MT My M=
-
53
C01
Min V
-15.30
-40.61
18.66
0.00
0.00
-0.00
LG1
Msx.V.,
-15.30
40.61
18.
0.00
0.00
-0.00
LG1
Min V,
15.71
14.48
-23.16
0,00
0.00
0.00
LG4
Max -MT
-15.30
-10.61
18.66
0.00
0.00
-0.00
LG1
Min MT
-15.30
-40.61
18.66
0.00
0.00
-0.00
LG1
Maxi My
-15.30
-40.61
18.66
0.00
0.
-0.00
LG1
Min
-15.30
-40.61
18.66
0.00
0.0
-0.00
LGt
_M
MaxiM'
15.67
11.06
-23.05
0.00
0.00
0.
LG2
Min M,
-15.30
40.61
18.66
0.00
0.00
-O.OD
LG1
85
C01
83>:
0t00
Wax'N
16.
-19.93
-10.02
0.00
0.00
0.00
LG1
Min N
-16.02
31.65
8.02
0.00
0.00
0.00
LG2
Max�Vy
-16.02
31,45
8.02
0.00
0.00
0.00
LG2
Min VV
16.08
-21.21
-10.06
0.00
0.00
0.00
LG3
Max V=
-16.02
31..65
- 8.02
0.00
0.00
0.00
LG2
Min V,
16.08
-21.21
-10.06
0.00
0.00
0.00
LG3
Maz:MT
16.09
-19.93
-10.02
0.00
0.00
0.00
LG'I
Min MT
16.09
-19.93
-10.02
0.00
0.00
0.00
LG1
Max.My
16.09
-19.93
-10.02
0.00
0.00
0.00
LG1
Min M
16.09
-19.93
-10.02
0.00
O.OD
0.00
LG1
MaxMz
16.09
-19.93
-10.02
0.00
0.00
0.0D
LG1
Min M
16.09
-19.93
-10.02
0.00
0.00
O.OD
LG1
84
15.80
"- Mazg
16._
-19.99
-10.02
-0.00
-1.58
3.15
LG1
Min N
-16.04
31.59
8.02
-0.00
1.27
5.00
LG2
Max,Vy.
-16.04
31.5
8.02
-0.00
1.27
5.00
LG2
Min Vv
16.08
-21.25
-10.06
-0.00
-1.59
3.35
LG3
Msk %
-16.04
31.59
8.02
-0.00
1.27
-5.00
LG2
Min V,
16.08
-21.25
-10.0
-0.00
-1.59
3.35
LG3
Max:MT
_
5.44
-1`,89
-0.04
0.
-0.00
0.29
LG5
Min MT
-16.04
31.59
8.02
-O.OD
1.27
-5.00
LG2
Max:My
-16.04
31.59
8.02
-0.00
1.27
5.00
LG2
Min M
16.08
-21.25
-10.06
-0.00
-1.59
3.35
LG3
Maic`MZ
16.08
„-21.25
-10.06
-0.00
-1.59
3.35
LG3
Min M,
-16.04
31.59
8.02
-0.00
1.27
-5.00,
LG2
87
C01
84
000
-Max N
4.97
-6.37
7.99
-0.00
1.27
5.00
LG2
Min N
.1.00
9.31
-10.08
-0.00
-1.59
3.35
LG3
"V
-0.65
9.7
-10.05
-0.00
-1.58
3.15
LGII
Min,
4.34
-6.72
7.96
-0.00
1.26
-4.75
LG4
MAX V,
4.97
-6.37
7.
-0.00
1.27
5.00
LG2
Min V.
-1.00
9.31
-10.08
-0.00
-1.59
3.35
LG3
Max MT
1.74
4.53
-0.10
0.
-0.00
0.29
LG5
Min MT
4.97
-6.37
7.99
-0.
1.27
-5.00
LG2
Maz My
4.97
- -6.37
7.99
-0.00
1.27
5.00
LG2
Min M.
-1.00
9.31
-10.08
-0.00
-1.5
3.35
LG3
l4jk%
-1.00
9.31
-' -10.08
-0.00
-1.59
3.35
LG3
Min M,
4.97
-6.37
7.99
-0.00
1.27
-5.OD
LG2
50' ,
1. C20
• M8X-N
4,9
-6.86
8.01
0.01
12.80
4.63
LG2
M16 N
-1.07
8.95
-10.08
0.04
-16.13
-9.82
LG3
MaxVy
-0.64
9.31
-10.04
OD4
-16.07
-10.61
LG1
Min V
4.32
-7.08
7.98
0.01
12.75
5.19
LG4
Max V,
4.94
-6.85
8.01
0.01
12.80
4.53
LG2
Min V,
-1.07
8.95
-10.00
0.04
-16.13
-9.82
LG3
Max MT
-0.64
9 31
-10.04
0.04,
-16.07
-10.61
LG1
Min MT
1.46
4.06
-0.36
0.
-0.34
-5.90
LG5
MaxMy
4.94
-6.85
8.01
0.01
12.80
4.53
LG2
Min. M
-1.07
8.95
-10.08
0.04
-16.13
-9.82
LG3
Max M=
4.32
-7.08
7.98
0.01
12.76
5.19,
LG4
Min M,
-0.64
9.31
-10.04
0.04
-16.07
-10,61
LG1
90
C01
56,
M00
, MwN
15.65
14.66
23.18
0.01
-13.90
8,74
LG4
,.
Min N
-15.61
-36.66
-18.55
0.03
11.13
-22.08
LG3
Max Vy
15.65
14.60
23.18
0.01
-13.90
8.74
LG4
Min Vv
-15.58
-40.31
-18.65
0.03
11.19
-24.29
LG1
Max V=
16.65
14.66
23.18
0.01
-13.90
8.74
LG4
Min V.
-15,68
-40.31
-18.65
0.03
11.19
-24.29
LG1
Max MT
-15.58
-40.31
'; -18.65
0.03
11.19
-24.29
LG1
Min MT
15.62
11.29
23.07
0.01
-13.84
6.70
LG2
Mawmy
' -15.68
-40.31
-18.65
0.03
11.1
24.29
LG1
Minh
16.65
14.66
23.18
0.01
-13.90
8.74
LG4
Max;Mz
_ 15.65
-14.66
23.18
0.01
-13.90
8.74
LG4
Min M,
-15.58
40.31
-18.65
0.03
11.19
-24.29,
LG1
88:
80.00
Max N
15.71
14:48
23.16
0.00
0.00
0.00
LG4
Min N
-15.38
36.90
-18.56
0.00
0.00
0.00
LG3
"V
15.71
- 14.48
23.16
0.00
0.00
0.00
LG4
Min V
-15.30
-40.61
-18.66
0.00
0.00
0.00
LG1
Mail V=
15.71
14.48
23.16
0.00
0.00
0.00
LG4
Min V,
-15.30
-40.61
-18.66
0.00
0.00
0.00
LG1
Mk W
=1520
-40.61
_ -18.66
0.00
0.00
0.00
LG1
Min MT
-15.30
40.61
-18.66
O.OD
0.00
0.00
LGi
Max'My
-15.30
-40 61
-18.66
0.00
0.0
0.00
LG1
Minh
-15.30
-40.61
-18.66
0.00
0.00
0.00
LG1
MaxM=
-15.38
-3690
-18.56
0.00
` 0.00
O.OD
LG3
-15.30
40.61
-18.66
0.00
0.00
0.00,
LG1
Section
No. 2: RRO
200x100x6.3
'
1
C01
59
0:00
'Max N
16.31
0.10
12.59
-0.00
173
1 1
LG2
Min N
6.57
0.28
12.64
0.00
23.31
-0.11
LG3
Max 'Vy
7.171,
0.
2.
00
23.32
-0.11
LG1
MlnV
5.90
0
2S
158
-0
2274
-0.17
LG4
Max VZ
16.31
0.10
12.5_
.00
-22.73
-0.16
LG2
® RFEM 4.10,2= - Arbitrary 31) Structures solved using FEM www.diubal.com
Josef Gartner GmbH Page: 32154
Gartnerstralle 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S
Project: AC2 _ Structure: BenchmarkGesbell-V3Dowel I Date: 08/02/2013
■ CROSS -SECTIONS
-INTERNAL
FORCES Load combinations
Member
H e
s'brlton
Shear
Forces [kNj
Moments (IcNm]
Corresponding Load Cases
No.
CO
;;
1c[gtlj
LL.> ,
N ';
1/y' ' Vz
MT My Mz
1
C01
Min V,
6.67
0.28
-12.64
0.00
23.31
-0.11
LG3
Max MT
6.57
0.28
-12.64
O.OD
23.31
-0.11
LG3
Min Mr
7.85
0.20
-3.76
-0.03
6.74
-0.02
LG5
Max my
7.17
0:34
, -12.58
0.00
23.3
-0.11
LG1
Min M,
15.90
0.05
12.58
-0.00
-22.74
-0.17
LG4
Max'Mz
7.85
0.20
-3.76
-0.03
6.74
-0.02
LG5
Min M,
16.90
0.05
12.58
-0.00
-22.74
-0.17
LG4
60`
20500
:: Max N
4.1
-0.05
-2.41
-0.03
-0.95
-0.01
LG5
Min N
-9.11
-0.15
-8.06
-0.00
-2.35
-0.07
LG3
Max,V
-4.10
-` -0.0
-2.41
-0.03
-0.95
-0.01
LG5
Min V,
-7.66
-0.1
-8.05
-0.00
-2.35
-0.08
LG1
Mak Vz
-3.22
-0.10
7.77
0.00
2.16
-0.05
LG4
Min V,
-9.11
-0A5
-8.06
-0.00
-2.36
-0.07
LG3
Mex'Mi.
-1.95
-0,11
7.76
0.00
2.16
-0.05
LG2
Min Mr
4.10
-0.05
-2.41
-0.0
-0.95
-0.01
LG5
Max My
-1.95
-0.11
7.76
0.00
2.1
-0.05
LG2
Min M.
-7.66
-0.16
-8.05
-0.00
-2.35
-0.08
LG1
Max'Mz
4AO
-0.05
-2.41
-0.03
-0.95
-0.01
LG5
Min M,
-7.66
-0.16
-8.05
-0.00
-2.35
-0.08
LG1
2
C01
81,.:"
Ot00'
-.Mez.N
16:
-0.10
-12.59
0.00
-22.72
-0.16
LG2
Min N
-6.11
-0.33
3.91
-0.03
7.84
0.05
LG5
Mix'
15.96
' " -0.
-12.59
0.00
-22.73
-0.17
LG4
Min V,
7.00
-0.34
12.59
-0.00
23.31
-0.11
LG1
Max Vz
6.41
r-0.27
12.
-0.00
23.30
-0.12
LG3
Min, V,
16.38
-0.10
-12.59
0.00
-22.72
-0.16
LG2
Max MT
16.38
-0.10
- -12.59
0.
-22.72
-0.16
LG2
Min Mr
-6.11
-0.33
3.91
-0.03
7.84
0.05
LG5
Max My
7.00
-0.34
12.59
-0.00
23.31
-0.11
LGt
Min M,'
15.96
-0.05
-12.59
0.00
-22.73
-0.17
LG4
Max Mz
-6.11
-0.33
3.91
-0.03
7.84
0.05
LG5
Min M,
15.96
-0.05
-12.59
0.00
-22.73
-0.17
LG4
' 56
2. 5 00
Max±N
15.5
-0.11
-13.74
0.00
-26.78
-0.13
LG4
Min N
-16.43
-0,42
4.24
-0.03
9.13
-0.00
LG5
MoVy
15.52
-0.11
-13.74
0.00
-26.78
-0.13
LG4
Min V,
-13.27
-0.44
13.59
-0.00
27.39
-0.26
LG1
Msx %
=12.93
-0.35
- 13.66
-0.00
' 27.39
-0.27
LG3
Min V,
15.52
-0.11
-13.74
0.00
-26.78
-0.13
LG4
:--
MAX MT
. 15.52
-0.11
-13.74
0.0
-26.78
-0.13
LG4
Min Mr
-16.43
-0.42
4.24
-0.03
9.13
-0.00
LG5
Maic:;My
-13.27
-0.44
13.59
-0.00
27.3
-0.26
LG1
Mtn M,
16.52
-0.11
-13.74
0.00
-26.78
-0.13
LG4
Max;'Mz
1 -16.43
-0.42
^ 4.24
-0.03
9.13
-0.00
LG5
Min M,
-12.93
-0.35
13.66
-0.00
27.39
-0.27
LG3
3
C01
78':
040
Mail°N
16.81
= 0.04
11.97
0.02
-3.12
-0.13
LG1
Minty
6.
0.00
3.78
0.04
-0.98
-0.05
LG5
max
16.72
0.071
11.88
0.02
3.10
-0.12
LG3
Min V,
15.50
-0.02
-12.11
-0.02
3.14
-0.13
LG2
MAx V=
16.81
004
11.97
0.02
-3.12
-0.13
LG1
Min V,
15.59
-0.02
-12.11
-0.02
3.14
-0.13
LG2
",MT
6.05
0.00
' 3.78
0.
-0.98
-0.05
LG5
Min. Mr
15.59
-0.02
-12.11
-0.02
3.14
-0.13
LG2
Mak
' 16.59
-0.02
-12.11
-0.02
3.14
-0.13
LG2
Min MY
16.81
0.04
11.97
0.02
3.12
-0.13
LG1
Max.M=
6.05
0.00
3.78
0.04
-0.98
-0.
LG5
Min ,
15.59
-0.02
-12.11
-0.02
3.14
-0.13
LG2
85 ..
" : ' 25.00
WAR
- -Z
-0,06
3.90
0.04
0.00
0.03
LG5
Min N
-7.61
-0.04
_
12.33
0.02
0.02
0.10
LG1
MaxV
-6.85
0.01
- 12.23
0.02
0.02
0.10
LG3
Min V.
-6.71
-0.1
-12.44
-0.02
-0.01
0.09
LG2
-7.01
0.04
. - 12.33
0.02
0.02
0.10
LG1
MinV;
-6.71
-0.10
-12.44
-0.02
-0.01
0.09
LG2
Max MT
-2.53
-0.06
3.90
0.04
0.00
0.03
LG5
Min Mr
-6.71
-0.10
-12.44
-0.02
-0.01
0.09
LG2
Max My
-6.95
0.01
12.23
0.02
0.02
0.10
LG3
Min M,
6.64
-0.05
-12.35
-0.02
-0.01
0.09
LG4
Max;Mz
6.95
0;01
12.23
0.02
0.02
0.10
LG3
Min M,
-2.63
-0.06
3.90
0.04
0.00
0.03
LG5
4
C01
70:'
000''
Max-N
'-6.
-0.02
C82
0.04
-9.83
-0.03
LG5
MIN
-38.77
-0.14
-6.29
-0.01
32.07
-0.18
LG2
Vy
-6.55
-0.02,
1.82
0.04
-9.83
-0.03
LG5
Min V,
38.77
-0.14
-6.29
-0.01
32.07
-0.18
LG2
Max Vz
" 37.24
- -0.14
' 6.22,
0.01
31.87
-0.17
LGt
Min V,
-38.77
-0.14
-6.2
-0.01
32.07
-0.18
LG2
MAX MT
-6.55
-002
1.82
0.04
-9.83
-0.03
LG5
Min MT
-38.77
-0.14
-6.29
-0.01
32.07
-0.18
LG2
Mai M;
38.77
60:14
-6.29
-0.01
32.07
-0.18
LG2
Min M,
37.24
-0.14
6.22
0.01
-31.87
-0.17
LG1
Max'Mi
-6.55
-0.02
1.62
0.04
-9.83
-0.03
LG5
Min M,
-38.77
-0.14
-6.29
-0.01
32.07
-0.18
LG2
78
:,305i00
MaicN
16.8
0.04
11.97
0.02
3.12
-0.13
LG1
Min N
6.05
0.00
3.78
0.04
-0.98
-0.05
LG5
Wax Vy
, 16,72
0.07
-,11.88
0.02
3.10
-0.12
LG3
Min V,
15.59
-0.02
-12.11
-0.02
3.14
-0.13
LG2
Max Vz
16.82
0.04
11.97
0.02
-3.12
-0.13
LG1
Min V,
15.59
-0.02
12.11
-0.02
3.14
-0.13
LG2
Maic;Mr
' ?-�
0.00
3.78
0.04
-0.98
-0.05
LG5
Min Mr
15.59
0.02
-12.11
-0.02
3.14
-0.13
LG2
® RFEM 4.10.2M - Arbitrary 31) Structures solved using FEM www.diubal.com
Josef Gartner GmbH Page: 33/54
GartnerstraMe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S
Project.,ACZ. Structure: BenchmarkGestell-Mowel I Date: 08/02/2013
■ CROSS -SECTIONS
-INTERNAL
FORCES Load Combinations
Member
Node
kaeatConx
Shear
Forces, IkNI
Moments IWml
Corresponding Load Cases
No.
CO
�.
Vz
MT Mr Mz
-
-4
C01
Max M
15.59
-0.02
-12.11
-0.02
3.14
-0.13
LG2
Min, my
" 16.82
0.04
11.97
0.02
3.12
-0.13
LG1
Max M,
6.05
0.00
3.78
0.04
-0.98
-0.05,
LG5
in M
15.69
-0.02
-12.11
-0.02
3.14
-0,13
LG2
5
C01
68
0.00
Max N
-11.
0.00
-0.01
0,04
-11.66
-0.04
LG5
Minty
',;. 57.78
0.00
0.03
0.00
38.33
-0.30
LG2
Max V
-57.78
O.OD
0.03
0.00
38.33
-0.30
LG2
MinV,
-11.09
0:
-0.01
0.04
-11.66
-0.04
LG5
Max V,
57.78
0.00
0.03
0.00
38.33
-0.30
LG2
Min V=
56.32
- 0:00
-0.
-0.00
-38.08
-0.28
LG1
Max MT
-11.09
0.00
-0.01
0.04
-11.66
-0.04
LG5
Min Mr
-56:32
0.00
-0,03
-0.
38.08
-0.28
LG1
Max M
-57.78
0.00
0.03
0.00
38.3
-0.30
LG2
Min°My
-56.32
' 0.00
-0.03
-0.00
-38.08
-0.28
LG1
Max M,
-11.09
0.00
401
0.04
-11.66
-0.04
LG5
MM M
57.78
'' 0.00
0.03
0.00
38.33
-0.30
LG2
70
210.00
Max N
-6.5
-0.02
1.82
0.04
-9.83
-0.03
LG5
Min N
><-38.76
-0,14
- -6.33
-0.01
32.07
-0.18
LG2
Max Vv
-6.55
-0.02
1.82
0.04
-9.83
-0.03
LG5
Mln`'V
-38.76
' -0.14
-6.33
-0.01
32.07
-0.18
LG2
Max V,
-37.23
-0.14
6.26
0.01
-31.87
-0.17
LG1
Min VZ
-38.76
-0.14
-6.
-0.01
32.07
-0.18
LG2
Max MT
-6.55
-0.02
1.82
0.04
-9.83
-0.03
LG5
MM;Mr
r38.76
-0.14
' -6.33
-0.01
32.07
-0.18
LG2
Max W
38.76
-0.14
-6.33
-0.01
32.07
-0.18
LG2
Min My
-37,23
-0.14
6.26
0.01
-31.87
-0.17
LG1
Max M,
-6.55
-0.02
1.82
0.04
-9.83
-0.03
LG5
,MlnM
-38.76
-0.14
-6.33
-0.01
32.07
-0.18
LG2
6
C01
63
0.00
Max 9
-7.20
0.02
-1.83
0.04
-9.82
-0.03
LG5
'
`Mlh N
48.70
0.14
6.33
0.01
32.07
-0.18
LG2
Max V
W.76
0.14
6.33
0.01
32.07
-0.18
LG2
Min Vy
-7.20
0.02
-1.83
. 0.04
-9.82
-0.03
LG5
Max,V,
38.76
0.14
6.33
0.01
32.07
-0.18
LG2
Min';V.
-37.23
0.14
-6.26
-0.01
31.87
-0.17
LG7
Max MT
-7.20
0.02
-1.83
0.04
-9.82
-0.03
LG5
Min.`Mr
37.23
0.14
6.26
-0.01
31.87
-0.17
LG1
Max M
-38.76
0.14
6.33
0.01
32.07
-0.18
LG2
Min`My
-37.23
0.14
-6.26
-0.01
-31.87
-0.17
LG1
Max M,
-7.20
0.02
-1.83
0.04
-9.82
-0.03
LG5
MinM
38.76
0.14
6.33
0.01
_ 32.07
-0.18
LG2
68
210.06
Max
-11.09
0.00
-0.01
0.04
-11.66
-0.04
LG5
Mln N
-57.78
-0.00
-0.03
-0.00
38.33
-0.30
LG2
Max V
-11.09
0.
-0.01
0.04
-11.66
404
LG5
MinVy
-57.78
-0.
-0.03
-0.00
38.33
-0.30
LG2
Max V,
56.32
-0.00
0.03
0.00
38.08
-0.28
LG1
Mln V=
57.78
-0.00
-0.03
-0.00
38.33
-0.30
LG2
Max Mr
-11.09
0.00
-0.01
0.04
-11.66
-0.04
LG5
_.
'Min'MT
-57.78
-0.00
-0.03
-0.00
38.33
-0.30
LG2
Max My
57.78
-0.00
-0.03
-0.00
38.3
-0.30
LG2
Min My
-56.32
-0.00
0.03
0.00
-38.0
-0.28
LG1
Max-M,
-11.09
0.00
-0.01
0.04
-11.66
-0,04
LG5
Min M
57.78
-0.00
-0.03
-0.00
38.33
-0.30
LG2
7
C01
55'
6.06
Max 9
16.8
-0.04
-11.97
-0.02
-3.12
-0.13
LG1
Min N
5.93
0.02
3.78
0.04
-0.98
-0.05
LG5
Max V
15.59
0.02
12.11
0.02
3.14
-0.13
LG2
Mm Vy
_
16.72
-0:07
-t ,88
-0.02
3.10
-0.12
LG3
Max V,
15.59
0.02
12.11
0.02
3,14
-0.13
LG2
_MinV7
16.82
-0.04
-11.97
-0,02
-3.12
-0.13
LG1
Max Mr
5.93
0.02
-3.78
0.04
-0.98
-0.05
LG5
Min'Mr
16.82
- -004
-11.97
-0.02
3.12
-0.13
LG1
Max M,
16.69
0.02
12.11
0.02
3.14
-0.13
LG2
MirtMy
16.82
-0.04
-11.97
-0.02
-3.12
-0.13
LG1
Max M,
5.93
0.02
-3.78
0.04
-0.98
-0,05
LG5
Min'M
15.59
0.02
12.11
0.02
3.14
-0.1
LG2
63
305.00
Max R
-7.21
0.02
-1.83
0.04
-9.82
-0.03
LG5
Min N
=38.7 ,
0.14
6.30
0.01
32.07
-0.18
LG2
Max V
38.78
0.14
6.30
0.01
32.07
-0.18
LG2
Min Vy
7.21
0.02
-1.83
0.04
-9.82
-0.03
LG5
Max V,
38.78
0.14
6.30
0.01
32.07
-0.18
LG2
,Min'Vz
-37.26
0.14
-6.23
-0.01
31.87
-0.17
LG1
Max MT
-7.21
0.02
-1.83
0.04
-9.82
-0.03
LG5
Miri Mr
-37.26
0:14
-6.23
-0.01
31.87
-0.17
LG7
Max M
38.78
0.14
6.30
0.01
32.07
-0.18
LG2
Mtn My
47.26
0.14
3:23
-0.01
31.87
-0.17
LG1
Max M,
-7.21
0.02
-1.83
0.04
-9.82
-0.03
LG5
M ;M
-38.78
0.14
6.30
0.01
32.07
-0.18
LG2
58
C01
47
0.00
Max N'
15.52
0.11
13.74
-0.00
-26.78
-0.13
LG4
Min N
-13.27
' 0.44
-13.69
0.00
27.39
-0.26
LG1
Max V
-13.27
0.44
-13.59
0.00
27.39
-0.26
LG1
Min Vy
16.52
0,11
13:74
-0.00
-26.78
-0.13
LG4
Max V,
15.52
0.11
13.74
-0.00
-26.78
-0.13
LG4
Min V=
-12.93
0.35
-13.66
0.00
27.39
-0.27
LG3
Max Mr
-12.93
0.35
-13.66
0.00
27.39
-0.27
LG3
MIn Mr
5.93
029
-4.11
-0.03
7.96
0.01
LG5
Max M
43.21
0.44
-13.59
0.00
27.3
-0.26
LG1
Mln`My
15.52
- 0.11
13.74
-0.00
-26.7
-0.13
LG4
Max M=
i
0.29
-4.11
-0.03
7.961
0.01
LG5
® RFEM 4.10.2680 -Arbitrary 30 Structures solved using FEM www.diubal.com
O
Oo8MidNCN7
�ynJ
��NJHUO
NN
V
NWW
au)Z—j
LU
LUNco
'9
W0Lc_LZ
o
a
Wii
;yUgcJULLV=ogZptW xo%
rg?
MJnnSoCmMSoMNNpNJNpOmNCOr0CmC$mVCp .JMMOO'mNn0�mn� rJMSw'Cr0ShnV .(qJnpCOrn��0C�OLLQV�pp'f>NJSNc0��CVCp .MJSmNr0��7MJumNro0�,((11�cnMoaDffJ,Oo��}c'I�MSrn'NroOpg((ttJOOrnOCrctO��pjV�f 1(1(JnmMOmccC��,7��� JVSrno'NrnOJrOMrrNg$:
gJMS.OIg�1h�h}{ (�11JMOcereqmN.�f�`V�'��-J�OOmMOq6v�/((qqJtSnnmqam'riJJ,JMtSa�s��Mg�o�• NJlm g<rqW ..J'�ONrqmNcS'-1NJOSnnCqrV, G-' rJt�OOMOnqnc' JNraMO<rcqCCN: -Vpp �rJtSMOhq�[cilJcMOeet.oNS(rO�7��, JMNNOSouQuqODiiiN0S�R'cetp°Iiii'JuTuOvq�C�nn)ifN0m NuoVrfi;O0�q0m�t1)m0nNuMo.-�t.Jr1C�omf?�lNJOvnNoMi iJrNOrnCsqut7�lJrMet�ompDt JrNOm�lqCqfil(1(�OppOQO'SO ff����IIJOGMMrO-JNg..VCro}}M�OOMNC�q5.INJlgN�oA0rJON�O5 1JM0cOoy0jrJ0�0oMr((((J00MN�qtJ��J(� (qq(JqCofrc��Vfl(l(JCMCqt�'/���V�tJMOppMovgcrJMeh�rqrSCN�Ef igccdMnOO' 'NJMrC�rorn' N�MMedNEo N�MrMCrop.VI� rJMfm�.q�-1O4mtoCjry JMolN�^h�NMMNOrNcpi� JrMfNOnrgjt(tCJgaaCmCarl!�����7�MNN0MrNrm
1(JrMM0s�SO1j�� MI OS�Cci)TSmCon J�SoCvqSfj OScCo:• qo->JMTSriqrnN�f>N2
6mComffjJOrtO��om?c 0NOSmCor�.0rI0OSo�qsNpc��21r0tCCOaom;p?���.(rI0000ONCqNn[3ci91NO'0CC�SSON[nr�'�i�i'MMrqmS0vNrNV�SgqtCf}1, JNOrrNM0o� 11JNOrr'M0vrcmff���jR 0JqqNrNy�ppgmIMA�c Jdrp(oONO:rtMOCc�namiNr��S0gCtc" p+�rmOmS0q�C�.O�p11NOrrMOr.cm"ff��'��_qJ��<.WOcSec-OOpr
11JO�I0NMOmo.'SS��C-.
J
NmNrrONvco,nOO rO Ob LD IN Inldm
O gOOgqq00
99999999999g9gq9999999999999999999494oa0000000000ggg944R4449999 9999999944449R4444C?RMNO4
ECO1 MN OMn;�C')M, Nqqqq pN RO�Ox ONn O87
NNNNNc4ploj NcN C.. 09cogogocoo¢ogogooqqcoc¢occggg9o9599o99oqoqsaOo.ogoogqo090999999909090999990909090999090909
iiinn?NVV.CC0O... ...00r6gN
NOQC00000-
n11,9MS980�0sOOm W ppOOSOppOSSS89$!3800Or000N N 99NN p OSOSOSSSOSSSSOOSSOOppSSNMONOOO
cociqCO OmNNNNra0q�2
m m nh0 r.-0Mn c009 M WO M wi CV t� O m OrAO0 'r-ONo NOON On
C'j NNNZ c�ccc c� c'mz O NN S
C.
i. 2:1Ci
U U Uco
U U
U Z o t7 cD
g
e
8
W
v
�d
e
8
W
v
�d
co
Z
W
0
Z
U-
LU
E°A
Z
N
vN�
r
La F-
c
I
O
w �
Ll
c �
8,
O � ,
J S
�- -ic-J-JSc-JcJ-J-ioj jo-j 01c c�c c���c�-1 -j �c�-i O-j-i-ic-jci� 09-19�0i-ic-1-1c1-1-jci-J i(D �0
J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J
SOON N bmtg0ln�a-�M� tq itl��aaO�ee��tt�� rm.-rimpp Ni�pp mm ���mm�A�ntnn�000 000 000pp Op000p ppOpp
a 0 0 S S 0 0 0 S S O 0 0 O O O O S O O O O O O Q O S O
N444RR9gR4R4gq5'g4ggqqgqgggqqqqqgqgqgqqqggqqgqqqqoqqgqqoqgog oocoocoococ000000cc0000c0000
� p p pp p p p p p p p p p pp p p p p p pp
E pG pC �/y�}aa pp ppv p Y MMMM{� M(�t� MMpp �/f0t� mNO m oNM�tnIN+), NlnnaDMno�D,n OS OOS OOS SSSSSSSSOOS OOOOaO �V�V��.7 GD a000 a0��Y�Va0�v0��OD�1�1�VI"QnV Vrv,rMSMMM.-(h C'1�MMMr
2.... �O>0101�NOf O>N01N �O�Oi�010iNO�OfNW�t(r�a-tbm�.-tn lf?.�tnq NfV q(VNNq.N (VqN Nn NNNNNn NNrN OCOOCCOG OOO OOOOOGOO C.o 000C OOC
9�
�$8$8,0o$o$oS$$88.oSSo800$88$_o$BoSo$S�880.Sg��SooS8$o,S$o$ oSSSB$o,S8�S$5888$000SBSS$88
ogogogqoqoqooqoqoggoqoqoogoqoggogccqocqocqocqqoqooqoqgooqqoqo 00000000000d00000000000c000c
oao�mppppmm8p28p29p4CO U'C"i mrncc��pp'Me�VMaanMMyy��yy ��pp� a mmvu�wom�pe� rn� �m ou�r� mmmbmms� o� n NmNNmN
mN�Ntnm:NNG01A.mb�YN NV'MNQaO V'.c�00MO�Oc+fr0000�006. . .tON4'1 S . 0.00000 O. 000000� .-
W1ClIC)lfr �()b�tl lfr�lf?�[i�1n ln�tnNl�nfV f�fl�I�lV.�PfV rfV OD dGNOD 1� ODNf�CO.N OCNMfV NtVNNIh NtV f+IN COCGOOOOCOOog O.:ggqgqqgqgq000o
'O.Sp pppp pppppppppp pp ppp pp p pp�� pp�� pp�� pp�� , ccr�� , , , MM yy,���ff pppppp pppppppppppp pp{{ppppppppp
000:0000000000 SO.00SS'00 ,00 �00:0�000 �'�0���0.-�O��co'O l�+), O:cM9,0 00,0 ,00:00.000000.0...0000.000 �.5$.. .
ogogodgcoocooqoqooq00000000000a0000000000000004q444�?ogggqq oq'ogg00000000000ddc;d oogooq
L
W 67 bV; OD �F� ��.-be-CO �gVWQ�a—�Y1� 6� @ Mi- M.-N(OMO {9m/7001 �pMM O,�S001 C O�WO� ��0 (� C1Mchih (qM MOMM �.
1DO haOm Ci iO m0C < C? N. _OfN (OCrN On GMC �YSO InCOft� OOi �o.� 1� Cf� f0 NI�tOmtO ram. b N CO CB asp �}e��}�f1 01 �Va �} to 01fK
(� Z; NNN NNR�NgN NNNNN NR.-N4N
iy � � � .
LOL cc cc!c !c!c c! cc!yc C `` cCC cc Cc cC C!c Q >»>NxZc »»NZ>»>NcC icCZc`` >'CC cc Cc cc �>.
I— 4c 'x
S
S:,
S
S
ac4i
Z
o
o
Na
� �
0
W
a) O>
In o
v�
CO
Z
ti
co
v
■ 2
S
N
of
U
a
0
a
W U.
c
n i
of
Josef Gartner GmbH Page: 36/54
Gartnerstraf3e 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S
Project:!- 2 Structure: BenchmarkG99tW1-V3Dowe1 I Date: 08/02/2013
■ CROSS -SECTIONS
-INTERNAL
FORCES Load combinations
Member
Notl
Location
$hear Forces [kNj:
MomerKs [kNmj
Corresponding Load Cases
No.
CO
lea`[a
`.
H ��`; rN'
Vy Vz
MT My M.
86
C01
Max,V,
7.42
-0.06
0.11
0.00
0.00
0.00
LG5
Min VZ
35.01
-0.00
0.04
0.00
0.00
0.00
LG3
Max Mr
34.11
-0.00
0.05
0.00
0.00
0.00
LG1
MT
34.11
-0.00
0.05
O.OD
0.00
0.00
LG1
..'Min,
Max M
34.11
-0.00
0.05
0.00
0.00,
0.00
LG1
Min MY
i34.11
-0.00
0.05
0.00
0.00
0.00
LG1
Max M,
34.11
-0.00
0.05
0.00
0.00
0.0
LG1
Min -M.
34.11
-000
0.05
0.00
0.00
O.OD
LG1
86
296.26
Max R
35.17
-0.00
-0.04
0.00
0.00
0.00
LG3
MinN
43.17
' ` -0i00
-0.10
0.00
0.00
0.00
LG2
Mex V
7.57
0.0
-0.11
0.00
0.00
0.00
LG5
Min'Vy
-43.17
-0.
-0.10
0.00
0.00
0.00
LG2
Max V,
35.17
-0.00
-0.04
0.00
0.00
0.00
LG3
Mk3 Vz
.
7.57
0,06
-0.11
0.00
0.00
0.00
LG5
Max Mr
34.33
-0.00
-0.05
0.00
0.00
0.00
LGt
MInm
34.33
-0.00
-0.05
0.
0.00
0.00
LG1
Max MT
34.33
-0.00
-0.05
0.00
0:
0.00
LG1
Min My
34.33
-0100
-0.05
0.00
0.
0.00
LGt
Max M,
34.33
-0.00
-0.05
0.00
0.00
0.0
LG1
34.33
-0.00
-0.05
0.00
0.00
0.0
LG1
Section
N6V.
04200x100x6.3
51
C01
50
0.00
Max N
0.1
-0.04
-12.26
-0.00
-0.00
0.04
LG4
MinN
A.
-0.02
12.24
0.00
0.01
0.03
LG1
Max V
-0.69
-0.01
12.14
0.00
0.01
0.03
LG3
Min Vy
-0.47
-0.05
3.87
-0.00
0.05
0.01
LG5
Max V,
-0.79
-0.02
12.24
0.00
0.01
0.03
LG1
Min Vz
0.16
:: ` -0.04
-12.3
-0.00
-0.00
0.04
LG2
Max MT
-0.79
-0.02
12.24
0.0
0.01
0.03
LG1
MInMT
_,
0.15
-004
-12.36
-0.
-0.00
0.04
LG2
Max M
-0.47
405
3.87
-0.00
0.05
0.01
LG5
Min My
0.15
: -0.04
-12.26
-0.00
-0:
0.04
LG4
Max M,
0.15
-0.04
-12.36
-0.00
-0.00
0.04
LG2
Min -M
-0.47
-0.05
3.87
-0.00
0.05
0.01
LG5
51
91.20
Max N'
0,72
0.07
13.48
0.00
11.25
0.06
LG3
-MinN
'-17.69
0.05
-13.63
-0.00
-11.51
0.08
LG2
Max, V
0.72
0.07
13.48
0.00
11.25
0.06
LG3
MlrrYy
-0.85
-0.02
4.37
0.00
3.72
0.02
LG5
Max, V,
0.43
0.06
13.57
0.00
11.34
0.06
LG1
Min:Vz
-17.0
0.05
-13:
-0.00
-11.51
0.08
LG2
Max Mr
0.43
0.06
13.57
0.
11.34
0.06
LG1
Min:M7
-1720
- 0.05
-13.55
-0.
-11.41
0.08
LG4
MaxM
0.43
0.06
13.57
0.00
11.34
0.06
LG1
'M_
-17.69
0.05
-13.63
-0.00
-11.51
0.08
LG2
MaxM,
-17.20
0.05
-13.65
-0.00
-11.41
0.08
LG4
_ .
Mlhv
-0.86
: -0.02
4.37
0.00
3.72
0.02
LG5
52
C01
51
0.00
Max N
16.87
0.01
7.54
-0.00
-11.51
0.04
LG2
MIn N
--27.59
0.02
-3.47
0.00
11.25
0.10
LG3
,Max V�
.8.17
0.04
0.08
0.00
3.72
0.03
LG5
Min Vy
16.33
0.01
6.98
-0.00
-11.41
0.04
LG4
Max V,
16.87
0.01
7.54
-0.00
-11.51
0.04
LG2
In Vz
-27.59
0.02
3.47
0.00
11.25
0.10
LG3
Max,MT
-27.21
0.02
-2.95
0.00
11.34
0.10
LG1
r
MMAT 116.33
0.01
6.98
-0.0
-11A1
0.04
LG4
Max M
-27.21
0.02
-2.95
0.00
11.34
0.10
LG1
Mln,My
16.87
0.01
7.54
-0.00
-11.51
0.04
LG2
Max M,
.27.59
0.02
-3.47
0.00
11.26
0.1
LG3
Minty}
-8.17
0.04
0.08
0.00
3.72
0.0
LG5
47
258.80
Max N'
22.
-0.02
2.13
0.00
-3.65
-0.12
LG4
MinN
: -56.85
-0.14
1.59
0.00
13.80
-0.31
LG1
Max V
-25.41
0.04
1.80
0.00
7.23
-0.03
LG5
_V,
Min
. -56,85
-0.1
1.59
0.00
13.80
-0.31
LG1
Max. V,
18.64
-0.06
2.7
0.00
-2.28
-0.11
LG2
M Vz
-02A6
_ -0..12
1.1
0!00
12.38
-0.31
LG3
Max Mr
-56.85
-0.14
1.59
0.00
13.80
-0.31
LG1
Min MT
' " +:18.64
-0.06
2.79
0,
-2.28
-0.11
LG2
Max M
56.85
-0.14
1.59
0.00
13.8
-0.31
LG1
,Min My
" 22.55
-0.02
2.13
0.00
3.6
-0.12
LG4
Max M,
-25.41
0.04
1.80
0.00
7.23
-O.Oa
LG5
Mln M
52.46
-012
1.12
0.00
12.38
-0.37
LG3
88
C01
85
0.00
Max (3
0.15
0.04
-12.26
0.00
-0.00
-0.04
LG4
Min N
w(X79
0.02
12.24
-0.00
0.01
-0.03
LG1
Max V„
0.15
0.
-12.26
0.00
-0.00
-0.04
LG4
Min Vy
> 0.54
-0.11
3.88
-0.00
-0.04
-0.00
LG5
Max V,
-0.79
0.02
12.24
-0.00
0.01
-0.03
LG1
MM:VZ
0.15
0.04
-12,3
0.00
-0.00
-0.04
LG2
Max Mr
0.15
0.04
-12.36
0.
-0.00
-0.04
LG2
Min.MT
-0.79
0.02
12.24
-0.0D
0.01
-0.03
LG1
Max, M
-0.69
0.01
12.14
-0.00
0.01
-0.03
LG3
1 Min:My
' '.-0.54
-0.11
3.88
-0.00
-0.04
-0.00
LG5
Max M,
-0.54
-0.11
3.88
-0.00
-0.04
-0.00
LG5
Mm,M,
0.15
004
-12.36
0.00
-0.00
-0.04
LG2
86
91.20
Max N
0.7
-0.07
13.48
-0.00
11.25
-0.06
LG3
Min N
-17.
-0:05
-13.63
0.00
11.51
-0.08
LG2
Max.V�
-0.73
-0.03
4.38
0.00
3.65
0.02
LG5
Min'Vy
0.72
0.07
13.48
-0.00
11.25
-0.06
LG3
Max V,
0.43
-0.06
13.57
-0.00
11.34
-0.06
LG1
Min`V=
A7.69
-0.05
-13.63
0.00
-11.51
-0:08
LG2
® RFEM 4.10.2680 - Arbitrary 30 Structures solved using FEM www.diubal.com
Josef Gartner GmbH Page: 37/54
Gartnerstrafle 20, 89423 GUNDELFINGEN Sheet: i
Tel: 09073/84-0 - Fax: 09073/84-2100 R E S U L T S
Project:,, - Structure: BenchmarWeste[I-V3Dowe[ I Date: 08/02/2013
/'Dr%oo Qel-Tifwa WYCDdiA1 rnoree i ...yea nnmF.in.�4inn�
_..---
Member
No.
CO;
-
NoY t
....?GIuCi�'...
Ltrcatwn
._- .
•- -
Shear Forces [kN) ,
N; . `Vy. Vz
Moments (kNm)
Mr My Mz
---- ---------------
Corresponding Load Cases
88
C01
Max Mr
-17.20
-0.05
-13.55
0.
-11.41
-0.08
LG4
Min MT
0.43
0.06
13.57
-O.OD
11.34
0*06
LG1
Max Mv
0.43
-0.06
13.57
-0.00
11.34
-0.06
LG1
Min My
=17.69
405
-13.63
0.00
-11.51
-0-08
LG2
Max M,
-0.73
-0.03
4.38
0.00
3.65
0.02
LG5
-17.20
-0.05
-13.55
0.00
-11.41
-0.08
LG4
89
C01
86
0.06
Max N
16.87
-0.01
7.54
0.00
-11.51
-0.04
1-132
Min N
=27.5
-0.02
3.47
-0.00
11.25
-0.10
LG3
Max V
-6.86
0.04
0.82
0.00
3.65
0.02
LG5
Min.Vy
- -27.59
-0.0
3.47
-0.00
11.25
-0.10
LG3
Max V,
16.87
-0.01
7.54
0.00
-11.51
-0.04
LG2
MinVz
. " .27.59
-0.02
-3.47
-0.00
11.25
-0.10
LG3
Max Mr
16.33
-0.01
6.98
0.0
-11.41
-0.04
LG4
Min:MT
-27.21
-0.02
-2.95
40D
11.34
-0.10
LGt
Max M
-27.21
-0.02
-2.95
-0.00
11.3
-0.10
LG1
MinrMy
=16.87
-0-01
7.54
0.00
-11.51
-0.04
LG2
Max M,
-6.86
0.04
0.82
0.00
3.65
0.02
LG5
Minh
"" -27.59
-0.02
3.47
-0.00
11.25
-0.10
LG3
56
258.86
Max R
22.55
0.02
2.13
-0.00
-3.65
0.12
LG4
Min N
-66.85
014
1.59
-0.00
13.80
0.31
LG7
Max V
-32.21
0.31
2.53
-0.00
9.11
0.00
LG5
Min Vy
22.55
0.02
2.13
-0.00
-3.65
0.12
LG4
Max V,
18.64
0.06
2.7
-0.00
-2.28
0.11
LG2
Min Vz
-52.46
0.12
1.1
-0.00
12.3i
0.31
LG3
Max Mr
18.64
0.06
2.79
-0.0
-2.28
0.11
LG2
Min: Mr
-56.85
0.14
1:51
-0.
13.80
0.31
LG1
Max. M,
-56.85
0.14
1.59
-0.00
13.8
0.31
LG1
Min My
>22.55
0:02
2.13
-0.00
-3.
0.12
LG4
Max
-52.46
0.12
1.12
-0.00
12.38
0,31
LG3
,M,
32.21
0:31
2.53
-0.00
9.11
0.004
LG5
Section
Noa:S. QRO
100x4.
60
C01
60
0.00
Max N
5.36
-0.10
-1.19
-0.00
0.02
-0.01
LG5
Min N
-10.1
-0.04
3.87
-0.00
-0.11
-0.02
LG4
Max V�
-10.15
-0.04
3.87
-0.00
-0.11
-0.02
LG4
Min Vy
' 5.36
-0.1
-1.19
-0.00
0.02
-0.01
LG5
Max V,
-10.15
-0.04
3.87
-0.00
0.11
-0.02
LG4
Min Vz
3.74
-0.07
-3.91
0'00
0.11
-0.03
1-133
Max Mr
4.46
-0.08
-3.91
0.00
0.11
-0.04
LG1
Min Mr
.
5.36
-0.10
-1.19
-0.00
0.02
-0.01
LG5
Max M
3.74
-0.07
-3.91
0.00
0.11
-0.03
LG3
Min My
-10.15
'- -0.04
3.87
-0.00
-0.11
-0.02
LG4
Max M,
5.36
-0.10
-1.19
-0.00
0.02
-0.01
LG5
Min'M
{ 4.45
-0.08
-3.91
0.00
0.11
-0.04
LG7
61
20.00
Max N'
6.1
-0.08
-3.76
0.00
-0.31
-0.02
LG1
Min N
>,43.75
` -0:04
3.76
-0.00
0.30
-0.02
LG4
Max V
-13.75
0.04
3.76
-0.00
0.30
-0.02
LG4
Mlh:Vy
&08
-0.11
-1.15
-0.00
-0.10
0.00
LG5
Max,.,
-13.75
-0.04
3.76
-0.00
0.30
-0.02
LG4
Min Vz
5.46
-0.08
-3.77
0.00
-0.31
-0.02
LG3
Max Mr
6.16
-0-08
-3.76
0.
-0.31
-0.02
LG1
Min Mr
6.08
-0.11
-1 15
-0.
-0.10
0.00
LG5
Max M
-13.75
-0.04
3.76
-0.00
0.3
-0.02
LG4
Min M'y
5.46
-0.08
-3.77
0.00
-0.31
4.02
LG3
Max M,
6.08
-0.11
-1.15
-0.00
-0.10
0.0
LG5
l- M
r <:6.16
-0.08
-3.76
0.00
-0.31
-0.02
LG1
61
C01
60
0.00
Max
6.68
-0.05
3.77
-0.00
-0.11
-0.03
LG2
Min N
-13.74
-0.06
-4.03
0.00
0.11
-0.03
LG3
Max V
-1.42
0,07
A A 9
-0.00
0.02
-0.00
1-135
Min`Vy
-13.03
-0.07
-4.02
0.00
0.11
-0.04
LG1
Max V,
6.05
-0.05
3.77
-0.00
-0.11
-0.02
LG4
Min:Vz
-13.74
-0.06
-4.03
0.00
0.11
-0.03
LG3
Max Mr
-13.03
-0.07
-4.02
0.
0.11
-0.04
LG1
Min'Mr
-1.42
0.07
-1.19
-0.
0.02
-0.00
LG5
Max M
-13.74
-0,06
-4.03
0.00
0.11
-0.03
LG3
Min My
6.05
" -0.05
3.77
-0.00
-0.11
-0.02
LG4
Max M,
-1.42
0.07
-1.19
-0.00
0.02
-0.00
LG5
Min`M
-13.03
-0.07
-4.02
0.00
0.11
-0.04
LG1
20.60
Max 9
8.
-0.05
3.63
-0.00
0.29
-0.02
LG2
Min N
-17.52
-0.07
-3.92
0.00
-0.31
-0.02
1-433
Max V
-2.40
0.06
-1.15
-0.00
-0.10
-0.01
LG5
Min Vy
-16.83
-0.07
-3.91
'
0.00
-0.31
-0.02
LG1
Max V,
7.77
-0.05
3.6
-0.00
0.29
-0.02
LG4
Min'Vz
-17.52
0.07
' -3.92
0.00
-0.31
-0.02
LG3
Max Mr
-16.83
-0.07
-3.91
0.
-0.31
-0.02
LG1
-
Min Mr
-2.40
0.06
-1.15
-0.0
-0.10
-0.01
LG5
Max
7.77
-0.05
3.63
-0.00
0.2
-0.02
LG4
_M
My
AZ52
0.07
-3.92
0.00
-0.31
-0.02
LG3
MaxM,
-2.40
0.06
-1.15
-0.00
-0.10
-0.01
LG5
Min M'
:Ae.83
-0.07
-3.91
0.00
-0.31
-0A2
LG1
62
40.00
Max fJ
11.
-0.04
3.35
-0.00
0.33
-0.02
LG2
Min N
=24.
= -0:05
3.69
0.00
-0.36
-0.02
LG3
Max V
-4.19
0.07
-1.07
-0.00
-0.11
-0.01
LG5
-0.
-3.6
0.00
-0.35
-0.02
LG1MaVy
1094
-0.03
3.63
-0
0,33
-0.01
LG4
--24.70
-0.05
-3.
0.
-0.35
-0.02
LG3
MMMaIniixnn
-24.01
-0.05
-3.
0
-0.35
-0.02
LG1
-MMVrrz
419
0.07
-1.
-0.
-0.11
-0.01
LG5
® RFEM 4.10.26M -Arbitrary 3D Structures solved using FEM www.diubal.com
3
�.
0
cn
0
cn
m
JJ
n
Z
O. �pO
Z
p0ppOp'
pOp^:-p0p pOp�.
.
m
333CMO) 33z iffm3mc�'�
ii
Z
:mC35'mS�C3��k�33m�m5-�C3�m3g�3m
a�CS�C �X �x SAC x 3�C3x
D
3�3 "GG<GZ �T.'35ccc"GGGGZ��E33 �"GG<��ZZ" v'S�3��N<GGZyF�3FM3"G<G<Zy3'��C�3�3««:27r.���33$<G<GZ ACC
r
O
VJOOA�cO.AOA
OppIWV��ppW�CCffVWVNVOoWVWOr1 JNJN VJ<�OA+O�OOA+O00.D;AO+tO(0J�OVODOVN�ODOW�OD1
VODJ:O/J0A+OAN-4:VN VjI CC WO
'.0
��Lpp7 Jqq.AWNAOo+WOp1� ppIW
>;V
V
m
.(".UOAWOWOOWV
G ;I
`
�:
66E6
obbpbpb66666opbo
_bybppbpbpbpoob0bpbpphppbbb_O666666bbbbbb_l666666666600600pob000b0000600.bpopoob000pbb_bpp6666pboh.bbo
OWNOAW �'+WfT A:V-�U1V•-+f071.t071V+OVNVOOffOJ�O COn �07161+001[O11.C100DNOf OD N:N�.0 O11N���OfWVW-W�VO.W61.'�OT W.00I:OIW•+OW Of�fOO.NWfOOOi:W N�ONN01U1 �C71 f0i�
-�. . . . . . L).WWW+CpJ�W+WLIW+L.IW WA-•AiJ+WL?A+WAWW+pLIJW+. . . .
f0 fW71(OO..ffl CWn (W7�OtO fW1�{00 (W71�NW N.O WONW WNWN-W+.W V�Vr War WvNW WNW(Olt NW NOOINVfO GAO AtDAA A W -4 -4-40 -4 VOADAVAS VNNOfNNNO�NT�NOD-4 (A
bobboobbobobbobboobbobobbboboobbobobbobboo666obbbboboobbbobohobboobbbboobboboobbbboobo6'
ca
o6(.7oo6b(o�o_obobopoboo66000Nbobbpbbobpoobbobopoo600po66000popbOo(bib6o6004ol(b�66ot(b�(b�766o766b7(o600(o6000bopooppobobbobbbo
`` "
041WOWWUWi0 WfW7�W�tON�(OO tNOS-W+<O tO+tNO �fif�-++(n- ��(OJi�+�AWOAW(OJINAWAC/f A.POP A0AA A0AAJ+.A�AA�AA A+AAA A00A0AANS(071 f07'i AfWJ1 -�WW
C
o6600p66600Ob6bbobbobbboo66666pbb6bbbbbbb6ppbbbbbbbbpbbbbbbbbbbbbbbbbbobboobbboo666666bbbbbbbbbbbbb"
O N O N N O N N N O N N O NN N S N N N.P W N O+ WN W N W W W N N 01. N N O W N W O N N N N N 0 N N N N N N O N N N O N N N N N W N N.�
rrG�rrG�rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr-rrrrrrrrrrrrrrrrrrrrr
cA&192 T 2 G) 2 GO G" G GMT WORU�'�k2G�G� ,n������A������'n�'n��i G�4��G�� conoft o"Rg �R9,MURA��i��n����L��G�
(T N fT WN+fli W N W N+NW (f1N W01 WN+ W N (71+ (TWAtTN fJf AN+ AA++N W NWA
n
0
ff 0)
ma
r n
3
ma
o
m
O
0
3
�c O
�Qj fC1
J !Y COD
O C
T
wCD
CD
sl
cC;)
Z
a
G)
Z
T S N
m
N
o C
r
c co
W
W cn + t
Josef Gartner GmbH Page: 39/54
GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax' 09073/84-2100 R E S U L T S
Project WC,2 Structure: BenchmarkG99WII-V3DOW91 I Date: 08/02/2013
■ (:KU55-5t(:l IUNU
- IN I EKNAL F-UKULb LOaa COn'1Dinations
Member
Nr1eorloTt
,
:Shear
Forces (kNl '
Moments ]kNm]
Corresponding Load Cases
No.
CO
d
(coif
_
N"' .,
Vy_ Vz
MT My Mz
77
COi
yl�n M
24.01
-0.05
3.68
-0.00
0.35
-0.02
LG1
78
C01
78
0.00
Ma X
6.1
0.08
3.76
-0.00
-0.31-
-0.02
LG1
_
Min N
-13.75
0.04
-3.76
0.00
0.30
-0.02
LG4
`yy
6A6
0.08,3.76
-0.00
-0.31
-0,02
LG1
Min V.
2.42
-0.06
1.26
-0.00
-0.09
-0.01
LG5
Mez l=
5.46
0.08
3.77
-0.00
-0.31
-0.02
LG3
Min V,
-13.75
0.04
-3.76
0.00
0.30
-0.02
LG4
Max:MT
-13:13
0.05
` -3.76
0.
0.30
-0.02
LG2
Min MT
2.42
-0.06
1.26
-0.
-0.09
-0.01
LG5
Ma- My
-13.75
0.04
-3.76
0.00
0.
-0.02
LG4
Min M
5.46
0.08
3.77
-0.00
-0.31
-0.02
LG3
MaxiMz
" 2.42
-0.06
126
-0.00
-0.09
-0.01
LG5
Min M,
6.16
0.08
3.76
-0.00
-0.31
-0.02
LG1
77>
"20:00?'MazN
4.45
0.08
3.91
-0.00
0.11
-0.04
LG1
Min N
-10.15
0.04
-3.87
0.00
-0.11
-0.02
LG4
MaX'Vy
4.45
0:0&
3.91
-0.00
0.11
-0.04
LG1
Min Vv
1.53
-0.07
1.31
-0.00
0.05
-0.00
LG5
Max:y=
3.74
0.07
3.91
-0.00
0.11
-0.03
LG3
Min V7
-10.15
0.04
-3.87
0.00
-0.11
-0.02
LG4
Mdkx MT
, 9.53
0.04
-3.87
0.
-0.11
-0.03
LG2
Min MT
1.53
-0.07
1.31
-0.00
0.05
-0.00
LG5
-
'MaxrMY
3.74
0.07
°'3.91
-0.00
0.11
-0.03
LG3
Min
-10.16
0.04
-3.87
0.00
-0.11
-0.02
LG4
,M
MaX W
1.53
-0.07
1.31
-0.00
0.05
-O.M
LG5
Min M.
4.45
0.08
3.91
-0.00
0.11
-0.041
LGt
AL
® RFEM 4.10.2880-Arbltrary 3D Structures solved using FEM www.diubal.com
Josef Gartner GmbH Page: 40/54
GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 GRAPHICS
Project:,` Structure: Benchmarkl3estell-V3Dowel Date: 08/02/2013
SURFACES SIGMA-1,+, C01: LG1/P OR LG21P OR LG3/P OR LG4/P OR LG5/P
C01: LG1/P or LG2/P or LG3/P or LG4/P or LG5/P Isometric
Surfaces Sigma-1,+
saw
25.254
22.018
18.783
15.547
12.312
9.077
5.841
2.606
-0.630
-3.865
-7.101
-10.336
Mu: 25254
Min:-10.336
]-4
Surfaces Max Sigma-1,+: 25.254, Min Sigma-1,+:-10.336 [N/mrri2]
Values: Sigma-1,+ [N/mm2]
<30.3 N/mm' see report 212100776ST-VG0001-Rev01
® I RFEM 4.10.2660 -Arbitrary 30 Structures solved using FEM
www.diubal.com
Josef Gartner GmbH Page: 41/54
tH11j,Gartnerstralle 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84.2100 GRAPHICS
ProjectAC2, - Structure: Benchmarkl3emell-V3Dowe1 Date: 08/02/2013
SURFACES SIGMA -I,, COI: LG1/P OR LG2/P OR LG3/P OR LG4/P OR LG5/P
CO1: LG1/P or LG2/P or LG3/P or LG4/P or LG5/P Isometric
Surfaces Sigma-1,-
sum
Q1: iWmm2)
23.097
20.058 -
17.020
13.981
10.942
7.904
4.885
1.826
.1.212
-4251
-7290
40.328
Max: 23.097
?An: -10.328
Surfaces Max Sigma-1,-: 23.097, Min Sigma-1,-:-10.328 [N/mm2]
Values: Sigma-1,- [N/mm2]
<30.3 N/mm2 see report 212190776-ST-VG0001-Rev01
® T RFEM 4.10.2680 - Arbitrary 31) Structures solved using FEM
www.diubal.com
Josef Gartner GmbH Page: 42/54
GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1
Tel:09073/W- Fax: 09073/84-2100 RF-STEEL AISC
I
Protect,A -2 Structure: BenchmarkGestell-WDowel Date: 08/02/2013
RFSTEEL AISC
CAI
GENERAL DATA
Members to design:
All
Design of steel memrs
axording to AISC (LRbeFD or
Ultimate Limit State Design
ASD)
Load groups to design:
LG1 1.2"LC1 + 1.6'LC2
LG2 1.2'LC1-1.6'LC2
LG3 0.9'LC1 + 1.6`LC2
LG4 0.9•LC1 - 1.6'LC2
r+rto 10001 oxoea4
00
QR01 m4
0
DETAILS
Check of Maximum Effective Slenderness Ratio
Members with
KL / r
Tenslon.oniy:
300
Compression / flexure:
200
Determination of elastic critical moment for lateral -torsional buckling (set of members only)
Point of applied load:
On cross-section edge directed to shear center (e.g. top flange, destabilizing effect)
Limit Load for Special Cases
Do not consider small moments if:
Mr,y / MAY 5
0.01
M"/Mp,=5
0.01
Do not consider small axial forces if:
Tension
Nrt / Np,t S
0.01
Compression
Nr,, / Np,, 5
0.01
Do not consider small shear forces if:
Vry / Vpy 5
0.01
Vrz / Vp,z 5
0.01
Limit shear stress for oross-sections with torsion:
2r/Sc5
0.01
Design Wall Thickness of HSS
Use design wall thickness for design of
N
HSS (Reduction of nominal thickness for
HSS according to B3.12)
Aeonal material
Descrip8on I Comment
Steel S 355
Cro§s s
Mahal
No
No
Cross-Sectlat Description [mm]
Comment
.,
1
RRO 200x100x6.3
2
1
RRO 200x1004.3
�RRO
1
200z100x6.3
1
ORO1000
-MEMBERS
205.00 ff9
1.00
205.00
0
09 -;
25.00 W
1.00
25.00
W
W
25.00 0
1.00
25.00
N
W `
305.00 0
1.00
305.00
0
W
210.00 0
1.00
210.00
0
0
210.00 0
1.00
210.00
W
D9
305.00 0
1.00
306.00
N
N
15.80 W
1.00
15.80
0
296.26 0
1.00
296.26
M
I About Axis z
KZ K=L 14
1.00 20
1.00 2
1.00 21
1.00 30
1.00 21,
1.00 21,
1.00 30'
1.00 1
1.00 29
Torsional Buckling
nsible KX I KXL
I L.T.B
jPossible,
M
1.00
205.00
U
W
1.00
26.00
U
Im
1.00
25.00
U
0
1.00
305.00
U
W
1.00
210.00
J
W
1.00
210.00
U
29
1.00
15.80
U
M
1.00
296.26
U
�` T RFEM 4.10.2880 -Arbitrary 3D Structures solved using FEM
www.diubal.com
m
�l d
a
ppppp p pp p
RNGOOSSS88SSS8SS8S OODNNNOODO.
x
4 ccovi000cui00000� owa} �Np0
Nv lON�NN rN^01No
U
OY
C
_MWWNNV'NtON
m
O O O O O O O O N O 0 0
NNNN NNb N N
pp
SSSSSS SSSOSSSSSOSSSSSS
NN
m
SSSSSSMM mcn
p Y
S
m
a
a
�pO�p^
oop0pp0op000000
508080888888
rrrrrr
p pppppppO o
.N}NQOO�pDp. OppOS SOpSp 00 p0p00 p0p000 �Ntpp N�}}N��OOpDpO
WON�ONN
�NiON�tON V'NNrNV ON�D
-1 7.
i�S
S.Y
A LL
SS SS 8 8 0 0 S S 8 S 8 8 S S S 8 8 S 8 8
rrr
r.=rrrrrrr rrrre-r
OOOOOOOON O00
C
NNN N NN NNCDNNN
�.�
to h N1n 1n 121nOl�in t[2
s 8gos sos 8s
O O O O O O O O O O N 00 O O
N NNN NNN NNNCDNNNN
NNOODSSSSSSS08SOS OOODN RNOOD.S - 00000OOON OOO OOOOOOOOOOOOOO N0000
T �p OIACppCpp�(100000N �t�pp CpppO W NNNrN�NNN NCD IN�NNNN NN NNNNNNNNN NtONNNN
i Y �01 N�ONN <N(ONN��ON�tN N rN�N CII H_.. S Cl) Cl) M�O00Cq c07fo+7.mm - ommm-O P�MOM MMM
8880888888.888,88888888 Q
� aY
$SS8SS00OR00888S88S888SS8SARCO 8
Yl tfi W Lo O C O Ma�pp tt►► CCppppb0 ppOpp00 pppppp ppN�A ttpp ppi�pp
.a. OCW48NNMr NYO>N tONN YN�ONVtONstNNr S�Of NtO
O p ppp p p p W
. aRN GDS 0p80'OO pO S S pS 8 08 SN NNC0.8
C^ Y01S fODNN �NtON(ON'V NO.O-(d pppo cWc
V® r N Nd' N N-Of C4 6 �C
�nIOU
LLI Z''�nuiru5�wm�°nnn�r°D�aopo�im��y Nrivin�ot�r°,°;�imc�ci'"��i�mm���Plonr°��`roa�o��'w
E
3
Josef Gartner GmbH
Page:
44/64
Uffl,
GartnerstraBe 20, 89423 GUNDELFINGEN
Sheet:
1
Tel: 09073/84-0 - Fax: 09073/84-2100
RF-STEEL AISC
0
Project: ;7A Structure: SenchmarkGestali-Mowel
Date:
08/02/2013
RF-STEEL AISC
DESIGN BY LOAD CASE
CAI
LG/LGC`
Load Case or
Member
location x
Aoc. to
Design of steel members
CO
LGlCq Description
Nc
x 1-1
Design
Formula
acwrling to AISC (LRFD or
ASD)
Ultimate Limit
State Design
LG1 i'
I 53
I 0.001
0.74I51
I 332)
IUL
Chapter H - Single axis ]or biaxial/ flexure with axial compressive force - acc. to H1.1
Design Internal Forces
P -15.58 kN V=
18.65 kN
My
-11.19 kNm
Vy -40.31 kN T
-0.03 kNm
M=
-24.29 kNm
Design Ratio
Tic 0.01 71b,2
0.58
qby 0.16 rl
0.74
1 5
1 0.001
0.56151
1 332)
JUL
rr
Chapter H - Single axis for biaxial/ flexure with axial compressive force - acc: to H1.1
Design internal Forces
P -57.79 kN Vz
0.03 kN
My
38.33 kNm
Vy 0.00 kN T
0.00 kNm
Mz
-0.30 kNm
r
Design Ratio
me 0.06 Tib,z
0.00
+tby 0.63 n
0.56
1 53
1 0.001
0.69151
1 332)
JUL
Chapter H - Single axis /or biaxial/ flexure with axial compressive force - ace. to H1.1
Design Internal Forces
P -15.61 kN V=
18.55 kN
My
-11.13 kNm
Vy -36.66 kN T
-0.03 kNm
M=
-22.08 kNm
Design Ratio
me 0.01 qbz
0.53
11b,y 0.15 n
0.69
i LG4
5
0.001
0.561
51
1 332)
JUL
Chapter H - Single axis /or biaxial/ flexure with axial compressive force - acc. to H1.1
DeslgniMernai Forces
P 56.18 kN Vz
0.03 kN
My
37.96 kNm
Vy 0.00 kN T
0.00 kNm
Mz
-0.29 kNm
Design Raflo
nc 0.06 11b,z
0.00
Eby 0.53 A
0.56
LG5
I 90
I 0,001
0.48151
1 331)
1UL
Chapter H - Biaxial bending without axial forces- sec. to
H1.1
Design internal Forces
P -5.23 kN Vz
-14.51 kN
My
8.74 kNm
'{
Vy -24.86 kN T
0.02 kNm
Mz
-14.98 kNm
Design Ratio
T1 b,y 0.12 nb,z
0.36
q
0.48
INTERNAL FORCES BY MEMBER
Member
fia
;"tor x _
Isnn]
__ Load
Cgse
Fortes [kN]
N - Vy Vz
Moments [kNm]
MT My
Mz
Ax. to
Formula
1
Crossaec o.2., RR0200x100x6.3
195.24� LG5 4.351 -0.05 -2.49
-0.031
-0.671
-0.02
1 100)
1 1
Negligible internal forces
4&81'I LG2 'I 20.751 -0.031 11.351
bb2
0.001
-15.581
-0.171
101)
Chapter D -'Tensile strength arc. to
0.001 LGt 1 7.17 0.34 � 12.581
0.001
23.321
-0.111
111)
Chapter F -Yielding - Bending about y-axis arc. to 2 - F12
0:00 LGt I 7.171 0.341 -12.58I
0.001
23.321
-0.111
126)
Chapter F--Ioce1 buckling of HSS section does not apply - arc. to F7
0.00� LG3 6.57I 0.281 -12.64�
0.001
23.311
-0.111
160)
Chapter G - Nominal shear strength n z-axis - ace. to G2 (G4,G ) - Unstiffened web
"0.001 LG2 16.311 0.101 12.59I
0.001
-22.731
-0.161
333)
Chapter H - Single ax a /or biaxiaV flexure with tensile force - acc. to H1.2
2
CrSbs
216 38I0x8.S
0.00I LG2'4 L'RR0
-0.10I-12.59I
0.001
-22.72I
-0.161
101)
Chapter D - ensile strength acc. to b2
2&001 LG5 1-16.43I -0.421 4.241
-0.031
9.131
0.001
102)
Chapter E- Comprassfve strength acc. to E3
25.001 LG1 43.27I -0.44 13.591
0.001
27.391
-0.261
111)
Chapter F -fielding -Bending about y-axis ate. to 2 - F12
0401 LG1 'I; 7.00 - -0.341 12.591
0.001
23.311
-0.111
126)
Chapter F =Local buckling or HSS section does not apply - arc. to F7
25.00 LG4 I 15.52-0.111-13.741
0.001
-26.781
-0.131
160)
Chapter G - Nominal shear strength m z-axis - acc. to G2 (G4,G5) - Unstiffened web
25.00 LG5 '14.241
9.131
0.001
301)
-16;43-0.421
Chapter E - Flexural buckling about -axis aoc. to E3
-0.031
25.00LG5 1-16.431 -0.421 4.241
-0.031
9.131
0.001
311)
® T RFEM 4.10.2680 -Arbitrary 3D Structures solved using FEM
www.diubW.com
Josef Gartner GmbH Page: 45/54
11 GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073184-0 - Fax: 09073/84-2100 RF-STEEL AISC
Project -AC23 . Structure: SenchmarkGesial(-WDowe1 Date: 08/02/2013
GOVERNING INTERNAL FORCES BY MEMBER
tl9init er
Lpc x
Laatl ,.
- --` Forces (M]
Moments (kNmj
Aeo. to
Ho
9(anj
Case
r, N Vy V.
MT ;
My M=
I Formula
s
Chapter E - Flexural budding about z-axis sec. to E3
25.0% LG5 1 '-16.431 -0.421 4.241
-0.031
9.131 0.001 321)
Chapter E -'Torsional buckling ace. to E4
25.001 LG1 1 13.271 -0.441 13.591
0.001
27.391 -0.261 332)
Chapter H - Single axis /or biaxial/ flexure with axial compressive force - sec. to H1.1
25,001 LG4 1 16.621 -0.111-13.741
0.001
-26.781 -0.131 333)
Chapter H - Single axis /or blaxiail flexure with tensileforce - acc. to H1.2
25.001 LG1-13.271 -0.441 13.591
0.001
27.391 -0.261 334)
Chapter H - Compressive force with single/major axis bending - ace. to 111.3
C "' `NG5. 21 RRO 202X7.Oix6.3 -0.061 3.901
0.041
0.001 0.031 100)
Negiigible'Int�ernal forces
0.001 LG1 I 16.811 0.041 11.971
0.021
-3.121 -0.131 101)
Chapter D -`tensile strength ace. to 2
0,00I LG2 II 15j591 -0.021-12.111
-0.021
3.141 -0.131 111)
Chapter F -Yielding -Winding about y axis ace. to F2 - F12
0.001 LG1 16.811 0.041 11.971
0.021
3.121 -0.131 126)
Chapter F - Local bu ing of HSS section does not apply - ace. o F7
26.001 LG2 .1 -6.71 -0.101-12.441
�n
-0.021
-0.011 0.091 160)
Chapter G;= Nominal shear strength z-axis - acc. to G2 (G4;G5) - Unstiffened web
0.001 LG7 16.811 0.041 11.971
0,021
-3.121 -0.131 333)
Chapter H -Single axis for biaxial/ flexure with tensile force - acc. to 111.2
4
Cross s 2 : RRO 200x100x6,3
305 .00 L 1 16.821 0.041 11,971
b2
0.021
3.121 -0.131 101)
Cacc._ hapter D - 'ensile strength a, to
0.001 LG2 1-38.771 -0.141 -6.291
-0.011
32.071 -0.181 102)
Chapter E - Compressive strength acc. to E3
111)
0.001; LG2, 1-36.771 -0.141 -6.291
-0.011
32.071 -0.181
Chapter F - Yielding - Bending about y-axis aoc.to F2 - F12
0.00I LG1-37.24-0.141 6.22II
0.011
-31.871 -0.171 126)
Chapter F -Local bu ing of HSS section does not apply -ace. fo F7
305.001 LG2 I 15.591 -0.021-12.11I
-0.021
3.141 -0.131 160)
Chapter G - Nominal shear strength n z-axis - soc. to G2 (G4,G5) - Unstiffened web
0.001 LG2 1-38.771 -0.141 -6.291
-0.011
32.071 -0.181 301)
Chapter E - Flexural buckling about 1 r-axis aoc. to E3
Q.00 ;>LG2 1 -38.n -0.141 -6.291
Flexural
-0.011
32.071 -0.181 311)
Chapter E - buckling about z-axis ace. to E3
0.001 LG2 1 -08.77 1 -0.141 -6.291
-0.011
32.071 -0.181 321)
Chapter E - Torsional budding acc. to E4
O.00j ,LG2 1:, -36771 -0.141 -6.291
-0.011
32.071 -0.181 332)
Chapter5 81 Single ax1s,lor biaxial/ 7 with aal compressive force - sec. to H1.1
1
9.081 -0.041 333)
Chapter H -Single �s /or biaxial/ flexure with tenslile force - acc. to H 1.2
0.001 LG2 1.-38.771 -0.141 -6.291
-0.011
32.071 -0.181 334)
Cfiapter H - Compressive force with single/major axis bending - acc. to 1-11.3
S
Cross 0.00 oWtq 21- RRO 2 SOxa80I x8.3 0.001 0.031
0.001
38.331 -0.30 102)
Chapter E - Compressive strength acc. to E3
0,00II LG2 1-57.781 0.001 0.031
0.001
38.331 -0.301 111)
Chapter F - Ylelding -Bending about y axis acc. to F2 - F12
nr '
0.00 LG1 -56.32 0.001 -0.031
0.001
-38.08 1 -0.28 1 126)
Chapter F - Local bu ing of HSS section does not apply - sec. to F7
210.001 LG2 I-38.761 -0.141 -6.331
-0.011
32.071 -0.181 160)
Chapter G -Nominal shear strength,In z-axis - acc. to G2 (G4,G5) - Unstiffened web
0.00 LG2 1 -5 J81 0.001 0.031 0.001
38.331 -0.301 301)
Chapter E - lexural budding about -axis ace. to E3
0.001 LG2 0.001 0.031
0.001
38.331 -0.301 311)
1_-57.78�
Chapter E Flexural buckling about is acc to E3
0.001 LG2 1-57.781 0.001 0.031
0.001
38.331 -0.301 321)
Chapter E - Torsional buckling acc. to E4
w
0.001 LG2, I, 57.781 0.001 0.031
0.001
38.331 -0.301 332)
T :
Chapter; H -i Single axis /or blaxiaU flexure with axial compressive force
- ace. to H 1.1
�
0.001 LG2 1--67.781 0.001 0.031
0.001
38.331 -0.301 334)
Chapter H - Compressive force with single/major axis bending - acc. to H1.3
w
Cross sea ogak 2 RRO 200x100x6.3
2t0.00 LG2 j-57.781 0.001 -0.031
0.001
38.331 -0.301 102)
ChaE - Compressive strengthace. to E3
210.001 LG2 1-57.781 0.001 -0.031
0.001
38.331 -0.301 111)
Chapter F -Yielding -Bending about y-axis ace. to F2 - F12
4
0.001 "LG1 1'-37.231 0.141 -6.261
-0.011
-31.871 -0.171 126)
.Chapter F =:Local buckling of HSS section does not apply - am to F7
0.001 LG2 1-38.761 0.141 6.331 0.011
Chapter G - Nominal shear strength In z-axis - acc. to G2 (G4,G5) - Unstiffened web
32.071 -0.181 160)
r
210.00 LG2 1 '-b7.781 0.001 -0.031
='�lexurel
0.001
38.331 -0.301 301)
.
Chapter Ebudding about axis ace. to E3
210.00� LG2 ( -57.787 0.001 -0.031
0.001
38.331 -0.301 311)
Chapter E - lexural budding about z-axis ace. to E3
210,001 LG2 1-67.781 0.001 -0.031
ChapterEl- Torslonal'budding to E4
0.001
38.331 -0.301 321)
acc.
210.001 LG2 1-57.781 0.001 -0.031
0.001
38.331 -0.301 332)
Chapter H -Single axis to biaxial/ flexure with axial compressive force - sec. to H1.1
210,001 LG2 1 57.781 0.001 -0.031 0.001
38.331 -0.301 334)
Co Chapter H -mpressive forge with single/major axis bending - acc. to H1.3
RFEM 4.10.2680 - Arbitrary 3D Structures solved using FEM ! vwwv.diubal.com
Y
Josef Gartner GmbH Page: 46/54
GartnerstraMe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0- Fax: 09073/84-2100 RF-STEEL AISC
Project A,2 Structure: BenchmatkGesbell-Mowei I Date: 08/02/2013
j4fember
Locx
Lead
Farces [IN]
N _ Vy V.
Moments [kNmj
Mr _ My M,
Ace. to
Formula
K7U
Cam; 0.00 �1 2 i RR0.216 $ OOx8.3' -0 041-11.971
-0.021
-3.121 -0.131 101)
Chapter D - ensile strength acc. to 2
=' 305.001' LG2 38:781 0.141 6.301
0.011
32.071 -0.181 102)
Chapter E -.Compressive strenggth ace. to E3
305.001 LG2 1 -9.781 0.14 6.301
0.011
32.071 -0.181 111)
Chapter F - yielding - Bending about y-axis acc. to 2 - F12
0.00[ 1" 16.821 - -0.041-11.971
-0.021
-3.121 -0.131 126)
,LG1
Chapter F - tocatbuddmg of HSS section does not apply - acc. to F7
0.001 LG2 1 15.590.021 12.111
0.021
3.141 0.131 160)
Chapter G - Nominal shear strength m z-axis - acc. to G2 (G4,G5) - Unstiffened web
305.00[ LG2 1-38.78[ 0.141 6.301 0.011
32.07� -0.18i 301)
Chapter E-;Fiaxurei buckling about axis ace, to E3
305.00I LG2-38.78� 0.141 6.301
0.011
32.071 -0.181 311)
Chapter E - Flexural budding about z-axis acc. to E3
'' 305,001 LG2 1-38.781 0.141 6.301
0.011
32.071 -0.181 321)
<�
Chapter E.- arsional Buckling acc, toE4
305.001 LG2-38.781 0.141 6.301
0.011
32.071 -0.181 332)
Chapter H -Single axis for biaxial/ flexure with axial compressive force -acc. to H1 A
49.191 LG1 1 12.071 -0.061-11.431 -0.021
-9.081 -0.041 333)
Chapter H - Single axis /or biaxial/ flexure with tensile force -act to H1.2
305.00I LG2 1-38.781 0.141 6.301
0.011
32.071 -0.181 334)
a
Chapter H - Compressive force with single/major axis bending -acc, to H1.3
48
efaaS41eO orift; 1 - RRO 200x100x8.3
0.00LG1 ( 16.091-19.931 10.021
0.001
0.001 0.001 101)
:Chapter D - ensile strength acc. to 02
15.801 LG2-16.041 31.591 -8.021
0.001
1.271 5.001 102)
Chapter E -Comppressive strength acc. to E3
15.80[ LG3 1= 16.081-21.251 10.061
0.001
1.591 3.351 111)
Ch apter F -Yielding - Bending about acc. to F2 - F12
15.80 LG2 ( 16.04 31.591-8.021
Melding Bending to F2 F12
0.001
-1.271 -5.001 112)
Chapter F - - about z-axis acc. -
7.90 LG1 1 16.09[-19.961 10.021
budding section does notapply - acc. to F7
0.001
0.791 1.581 126)
z
ChapterF -'Local ofHSS
15.80I LG2 I-16.041 31.591 -8,021 0.001
bu HSS due to F7
-1.271 -5.001 146)
tr
Chapter F - Local ing of section moment about minor axis
0.001 LG3 1 16.081-21.211 10.061
- acc.
0.001
0.001 0.001 160)
(
Chapter G - Nominal shear strength in z axis-acc. to G2 (G4.G5) - Unstfffened web
0.001 LG2 1-16.021 31.651 -8.021 0.001
0.001 0.001 161)
Chapter G -Nominal shear strength n y-axis - acc. to G7 (G4,G5) - Unstiffened
web
15.80I, . L02 (< 16.041 31.591 8.021
-Flexural to E3
0.001
-1.27 5.001 301)
Chapter E budding about -axis ace.
15.80I LG2 1-16.04� 31.591 -8.021
0.001
-1.271 -5.001 311)
Chapter E -Flexural buckling about z-axis acc. to E3
15,801 LG2 "j'. -16.041 31.59) 6.021
0.001
1.271 5.001 321)
Chapter E-- orsional buckling aoc. to E4
15.801 LG5 5.381 3.701 5.591
0.001
0.891 0.58 331)
Chapter H - Biaxial bending without axial forces - acc, to H1.1
16.801 LG2 I:-16.041 31.691 -8.021
0,001
-1.271 5.001 332)
Chapter H - Single ax s /or blaxfaV flexure with axis compressive force -acc to H1.1
15.601 LG3 16.081-21.25[ 10.061 0.001
1.591 3.351 333)
Chapter H -Single axis /or biaxial/ flexure with tensile force - acc. to H1.2
7,901 LG2 1'-16.031 31.631 , -8.021
0.001
-0.631 -2.501 335)
Chapter H - Compressive force with single/minor axis bending - acc. to
H1.3
49
c, cq.n LNo s": CRo 8oxa b 1 I
6 G3 1 35.17 0.00 -0.04
0.00 I
0.00 0.00 101)
1 1
Chapter D - ensile strength aoc. to 2
0.001 LG2 1;-43.391 0.001 0.101
0.001
0.001 0.001 102)
Chapter,Ii - Compressive strength acc: to E3
126.97I LG5 i 8.971 -0.01 0.021
�2
0.001
0.081 0.041 111)
Chapter F -Yielding - Bending about y-axis acc. to - F12
84.65I G2-43.331 0.001 0.061
L
Chapter F -Local bu1ing HSS does to F7
0.001
0.061 0.001 126)
-�
" z
of section not apply - acc.
0.00� LG2 1-43.391 0.001 0.101
0.001
0.001 0.001 301)
Chapter E - lexural buckling about -axis acc. to E3
0001 LG2 1-43.391 0.001 0.101
0.001
0.001 0.001 311)
Chept budding 3 z-axis acc.0.001
0 001 LG2 1 -43.ral
0.101
0.001
0.001 0.001 321)
Chapter E - Torsional buckling acc. to E4
126,971 LG2 1-43.291 0.001 0,021
0.001
0.081 0.001 332)
'Chapter H - Single axis /or biaxial/ flexure with axial compressive force - acc. to H1.1
169.291 LG5 J 8.991 0.01 t -0.021 0.001
0.081 0.041 333)
Chapter H - Single axis /or biaxial/ flexure with tensile force -acc. to H1.2
126.971 LG2 ( 43.291 0.001 0.021 0.001
0.081 0.001 334)
Chapter H - Compressive force with single/major axis bending - acc. to H1.3
tiQ
CYa 44tlorrL f 1.2 1-;RR0200 0�x8.3 - 8.951 10.081
Chapter F�3
ieiding about acc. to 2 - F12
-0.041
16.131 -9.821 111)
- -Bending y-axis
144.20I LG1 1 - -0.641 9.311 10.041
Chapter F12
-0.041
16.071-10.611 112)
F -Yielding -Bending about z-axis acc. to F2 -
0.00 LG1 I -0.55� 9.791 10.051
F7
0.001
1.581 3.151 126)
Chapter F - Local buckling of HSS section does not apply - acc. to
144201 LG1 ,1 -0.641 9.311 10,041
-0.041
16.071-10.611 146)
® T RFEM 4.10.2810 -Arbitrary 3D Structures solved using FEM
www.diubal.com
Josef Gartner GmbH Page: 47/54
GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073184-2100 RF-STEEL AISC
Project: 1 2 Structure: BenchmarWasiell-Mowei f Date: 08/02/2013
GOVERNING INTERNAL FORCES BY MEMBER
FlAembe;
Locx ` Load, Forces ]kN]
N Vy V.
Moments ]kNm]
MT My MZ
Acc. to
Formula
Chapter F - Local budding of HSS section due moment about minor axis - aoc. to F7
0.001 LG3 -1.00 9.311 10,081
In
0.001
1.591 3.351 160)
Chapter G -Nominal shear strength z-axis - aoc. to G2 (G4,135) - Unsttffened web
r
0.001 LG1 J -0.551 9.791 10.051
0.001
1.581 3.151 161)
Chapter G - Nominal shear strength in y-axis - acc. to G7 (G4,G5) - Unstiffened web
144.201 LG1 -0.641 9.311 10.041
-0.041
16,071-10.611 331)
Chapter H - Biaxial bending without axaal forces - acc. to 1-11.1
$1
Cros 1s 0.13 4' RR0 2 O 2 �x6.S. -0.041 3.931
0.001
0.431 0.021 100)
Negligible "Internal foroe
91.201 LG2-17.69I 0.051-13.631
0.001
-11.511 0,081 102)
Chapter E - Compressive strength aoc. to E3
0.081 111)
91.201 LG2 j-17.691 0.051-13.631
0.001
-11.511
Chapter F -'Yielding = Bending about y-axis acc. to F2 - F12
10.131 LG1 1 0.691 -0.021 12.391
0.001
1.201 0.051 126)
Chapter F -Local buckling of HSS section does not apply - sec. to F7
91-.201 LG2 -17.69) 0.051-13.631
0.001
-11.511 0.081 160)
Chapter G - Nominal shear stren h in z-axis - ace. to G2 (G4,135) - Unstiffened web
91.201 LG2 I-17.691 0.051-13.631
0.001
-11.511 0.081 301)
"
Chapter E - Flexural buckling about axis aoc. to E3
91:201 LG2 1-17.691 - 0.051-13.631
0.001
-11.511 0.081 311)
Chaptei.E - 1exural budding about z-axis ace, to E3
91.201 LG2 1-17.691 0.051-13.631
0.001
-11.511 0.081 321)
Chapter E - Torsional buckling sec. to E4
91.201 LG2 "I-17.691 0.051-13.631
0.001
-11.511 0.081 332)
i
i or biaxi�169lexure with compressive force - a0I H1.1
Cfiapt9l
LgG2aXis
20� O$i
_11.51 0.081 334)
F c ;
Chapter H - Compressive force with single/major axis bending - acc. to 1-11.3
• $2
Cross�eCybn No- .- RR0 200x100x8.3
1$9.121' LG4 I 24.23� 0.041 3.791
0.001
3.951 -0.151 101)
Cha 22558 801`rBLGt 1 site strength aoc. to
56.85I 2 -0.141 1.591
0.001
13.801 -0.311 102)
Chapter E - Compressive strength aoc. to E3
288.801 LG7 I-56.85I -0.141 1.591
0.001
13.801 -0.311 111)
Chapter F - elding -: Bending about y-axis acc. to F2 - F12
j
0.001 1-61 �-27.211 0.021 -2.951
0.001
11.341 0.101 126)
Chapter F -Local bu ing of HSS section does not apply - ace. to F7
0.00 1 1 LG2 (' 16.871 0.011 7.541 0.001
- to G2 Unstiffened
-11.511 0.041 160)
Chapter G,-' Nominal shear strength n z-axis acc. (G4,G5) -
258.66 LG1 1-56.851 .0.141 1.591
web
0.001
13.801 -0.311 301)
Chapter E - kexural buckling about -axis ace. to E3
1.591
0.001
13.801 311)
258.80I LG7 I 56.85� -0.141
Chapter E - Flexural budding about z-axis acc. to E3
-0.311
258.801 LG1 1-56.85I -0.141 1.591
0.001
13.801 -0.311 321)
Chapter E -`torsional budding ace. to E4
268.801 LG1 1-66.85I' -0.14� 1.591
0.001
13.801 -0.311 332)
Chapter H -;Single axis /or biaxial/flexurewith axial compressive force - aoc. to 1-11.1
0.001 LG2 1 16.87I 0.015 7.541
0.001
-11.511 0.041 333)
Chapter H - Single axis /or biaxiall flexure with tens Is force - sec. to H1.2
258.801 LG1 1.-56.851 - -0.141 1.591 0.001
13.801 -0.311 334)
Chapter H.- Compressive force with single/major axis bending - acc. to 1-11.3 -
60.00 LG4"1I RR0205 �OOx6.3 14.48I 23.16�
Chapter D - ensile strength sec. to 2
0.001
0.001 0.001 101)
0:00} LG3 1 -15:61 j-36.661 18.551 -
-0.031
A 1.131-22.081 102)
Chapter E - Compressive strength ace. to E3
8.741 111)
0.00I LG4 1 15.651 14.661-23.181
-0.011
13.901
Chapter F -Yielding - Bending about y axis acc. to F2 - F12
0.001` LG1 I;-15.581 -40.31 18.651
-0.031
-11.191-24.291 112)
Chapter F ;Yielding - Sending about ¢-axle acc. to 2 - Ft Z
0.00 LG1 I-15.581-40.311 18.651
-0.031
-11.191-24.291 126)
Chapter F - -ocal buckling of HSS section does not apply - ace. to F7
0.00 LG1-16.581-40.311 18.661
-0.031
-11.191-24.291 146)
u .
Chapter F =a oval bu ling of HSS section due moment about minor axis - ace. to F7
0.001 LG4 1 15.65I 14.661-23.181
-0.011
13.901 8.741 160)
Chapter G - Nominal shear strenggtt�hl m z-axis - acc. to G2 (G4,G$) - Unstiffened web
60.001 LGII 1 1 .301-40.611 18.661
0.001
0.001 0.001 161)
Chapter G- Nominal shear strength m y-axas - ace. to G7 (134,135) - Unstiffened web
0.00� LG3 I 15 61I 36.661 18.551
-0.03�
-11.131-22.081 301)
Chapter E - lexural budding about axis sec. to E3
0.001 LG3 ' 1-15.611-36.661 18.551
-0.031
-11.131-22.081 311)
Chaplet E= Flexural budding about z-axis acc. to E3
0.001 LW I 15.61-36.661 18.551
-0.031
11.131 22.081 321)
n
Chapter E -torsional buckling acc to E4
0.001 LG5 1 -5.161-19.971 -1.191
0.001
0.751 12.051 331)
Chapter H -.Biaxial bending without axial forces - acc. to H1.1
0.001 LG1 1-15.581-40.311 18.651
-0.031
-11.191-24.291 332)
Chapter H - Single axis /or biaxial/ flexure with axial compressive force - acc. to H1.1
O.00j "LG4 I 16,651 14.661 -23.181
-0.011
13.901 8.741 333)
Chapter H - Single axis /or biaxial/ flexure with tensile force- aoc. to 1-11.2
C 25.001 LG2 21; RR0 2 x 00x6.3 0.101 12.591
ju�
0.001
-22.721 -0.161 101)
Chapter D - ensile strength sec. to 2
® RFEM 4.10.2680 -Arbitrary 3D Structures solved using FEM
www.diubal.com
Josef Gartner GmbH Page: 48/54
Gartnerstra& 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: OW73/84-2100 RF-STEEL AISC
Project:,; , Structure: BenchmarkGesteil43Dowe1 Date: 08/02/2013
GOVERNING
INTERNAL
FORCES BY MEMBER
COO"' C
Lao x
Load
Forces [kNI
Moments [kNml
Ace. to
fIP
{eml
:Case
N Vy V.
Mr
Mr
AAz
Formula
0.00 LG1 -13.27 0,44 -13.59
0.00
27.39
-0.26 102)
Chapter E - Compressive strength aoc. to E3
0.001 LG1 1-13.270.441-13.591
0.001
27.391
-0.261 111)
`
Chapter F - Yielding - Bending about y-axis acc. to F2 - F12
Y
0.00 LG1 1-13.271 0.441-13.591
Chapter F - coal buckling of HSS section does not apply - acc. to F7
0.001
27.391
-0.261 126)
0.001 LG4 15.52 0.111 13,741
�n
0.001
-26.781
-0.131 160)
Chapter G - Nominal shear strength z-axis - acc. to G2 (G4,G ) - UnstHtened
web
0.00) LG1 1;-13.271 0,441-13.591
0.001
27.391
-0.261 301)
Chapter E - Flexural buckling about y-axis acc. to E3
0.001 LG1 ( -13.27 0.441 -13.59 1
0.001
27.391
-0.261 311)
m
Chapter E - Flexural budding about z axis acc. to E3
0.001 LG1 1-13.271 0.441-13.591
0.001
27.391
-0.261 321)
>.
Chapter. E -;'Torsional buckling acc. to E4
0.001 LG1 1-13.271 0.44�-13.591
0.001
27.391
-0.261 332)
Chapter H - Single axis /or biaxial/ flexure with axial compressive force - aoc. to H1.1
0.001' LG4 I15.521 0.111 13.741
0.001
-26.781
-0.131 333)
Chapter H - Single axis Ior biaxial/flexure with tensile force - acc. to H1.2
0.001 LG11 -13.271 0.441-13.591
0.001
27.391
-0.261 334)
Chapter H - Compressive force with singletmajor axis bending - acc. to H1.3
60
Goss on �o`. !S=QR0100x4
10.00 LG7 ( 4A51 -0.091 3.911
0.001
-0.281
-0.031 101)
Chapter D --Tensile strength aoc. to D2
10.001 LG4 1-10.151 .0.051 3.871
to E3
0.001
0.281
-0.021 102)
Chapter E - Compressive strength acc.
20.001 LG3 1 1 5.461 -0.081 3.771
0.001
-0.311
-0.021 111)
Chapter F - Yielding - Bending about y-axis aoc. to F2 - F12
10.00 LG1 I 4.45I -0.091 -3.911
0,001
-0.281
-0.031 126)
Chapter F - Local buckling of HSS section does not apply - acc. to F7
`s
0.001 LG3 'I 3:741 -0.071 -3.911
0.001
0.111
-0.031 160)
Chapter G"- Nominal shear strength in Z-Ms - acc. to G2 (G4,G5) - Unstiffened web
10.00 LG4 ( -10.15 -0.051
LG4
0.001
0.281
-0.02 301)
Chapter budding about -axis acc. to E3
Chapter E -
10.00 LG4 j"" -10.15 -0.051 3.871
0.001
0.281
-0.021 311)
Chapter E -Flexural buckling about z Is ax to E3
10.001 LG4 1-10.151 -0.051 3.871
0.001
0.281
-0.021 321)
Chapter E - Torsional budding acc. to E4
20.001 LG4 I-13,751 -0.041 3.761
0.001
0.301
-0.021 332)
Chapter H ?:Single axis /or biaxial/ flexure with axial compressive force - acc. to H1.1
20.001 LG1 1 6.161 -0.081 -3.761
0.001
-0,311
-0.021 333)
Chapter H - Single axis /or biaxial/ flexure with tensile force - ace. to H1.2
20.001 L134 1-13.751 -0.041 3.761
0.001
0.301
-0.021 334)
Chapter H - Compressive force with single/major axis bending - acc. to H1.3
61
Gloss�ec off"W.1-QR0100x4
0.00� LG5 1 -1.421 0.071 -1.191
0.001
0.021
0.001 100)
Negligible intemal forces
30.001 LG2 { 10.041 -0.051 3.491
0.001
0.311
-0.021 101)
Chapter D -'Tensile strength am. to D2
30.001 LW 1-21.181 -0.061 -3.80 1
0.001
-0.331
-0.021 102)
Chapter E - Compressive strength acc. to E3
111)
40.001 LG3 I-24.701 -0.051 -3.691
0.001
-0.351
-0.021
4'
Chapt10 00I eLG1� _ endin Y-axis 2 - F1-4.021
-13.03 -0.081
Local F7
0.001
-0.291
-0.031 126)
Chapter F - budCling of HSS section does not apply - acc. to
0.001 LG3 I-13.741 -0.061 -4.031 0.001
Chapter G - Nominal shear strength in aoc. to G2 (G4,G5) - Unstiffened web
0.111
-0.031 160)
z-axis -
30.00 3 1-21.181 -0.061 -3.801
0.001
-0,331
-0.021 301)
Chapter E - Flexural buckling about -axis aec. to E3
30.001 LG3 1,-21.18� -0.061 3.801
0.001
-0.331
-0.021 311)
Chapter E �-Flexural buckling aboufz azis ace, to E3
30.001 LG3 1-21,181 -0.061 3.801
0.001
-0.331
-0.021 321)
Chapter E - Torsional buckling acc. to E4
40.001 LG3 1-24.701 -0.051 3.691
0.001
-0.351
-0,021 332)
"
Chap 40r -I Single is /or brad flexure with axxiial compressive) force - acc. H1.1
0.33
A.02 333)
z
Chapter H - Single axis /or biaxial/ flexure with tensile force - ace. to H 1.2
" 40.001 LG3 1!-24.701 -0.051 -3.691
0.001
-0.351
-0,021 334)
Chapter H - Compressive force with single/major axis bending - aoc to H1.3
tiY
C 10.00 Go: S I- t3R0107 781 -0.071 3.621
0.001
-0.331
-0.021 101)
Chapter D - ensile strength aoc. to D2
10.0011 LG4 ,I-17.221 -0.031 3.651
0.001
0.321
-0.021 102)
Chapter E -:Compressive strength ace. to E3
20.001 LG3 1 8.611 -0.061 -3.481
0.001
-0.341
-0.021 111)
f
Chapter F - Yielding - Bending about y-axis acc. to F2 - F12
10.00ff LGII 1 7.781 -0.071 3.621
0.001
-0.331
-0.021 126)
Chapter F = Local buckling of HSS section does not apply - acc, to F7
0.00 LG4 1-17.221 -0.021 3.661
0.001
-0.051
-0.021 160)
Chapter G - Nominal shear strenggth in z-axis - ace. to G2 (G4,G5) - Unstlffened web
10.00 LG4")-17.221 -0,031 3.651
�lexural
0.001
0.321
-0.021 301)
Chapter E = buckling about axis acc. to E3
10.001 LG4 I-17.22T -0.031 3.651
om1
0.321
-0.021 311)
=
Chapter E - Flexural buckling about z-axis acc. to E3
10.001 LG4' 1-17.221 -0.031 3.651
0.001
0.321
-0.021 321)
® RFEM 4.10.2680 - Arbitrary 3D Structures solved using FEM
www.diubal.com
M
Josef Gartner GmbH
Page:
49/54
Gartnerstraft 20, 89423 GUNDELFINGEN
Sheet:
1
Tel: 09073/84-0 - Fax: 09073/84-2100
RF-STEEL AISC
Project: ACZ Structure: SenchmarkGoeiell-Mowel
Date:
08/02/2013
GOVERNING INTERNAL FORCES BY MEMBER
Aember
=Loci ,.
Load
Forces [kN]
Moments [kNm]
ACC. to
_
Case.
` N Vy V=
MT My
MZ
Formula
Chapter E -`Torsional budding acc. to E4
20.001 LG4 1-20.571 -0.031 3.541
0.001 0.341
-0.021
332)
Chapter H -Single axis /or biaxial/ flexure with axial compressive force - acc. to H1.1
20.001 LG1 19.311 -0.061 -3.471
0.001 -0.341
-0.021
333)
Chapter H -Single axis /or biaxiaV flexure with tensile force -ace. to H
1.2
20.001 LG4 1-20.571 -0.031 3.541 0.001 0.341
-0.021
334)
t
Chapter H - Compressive force with single/major axis bending - acc. to
111.3
63 Y
r00oss4ec orrNo.`2.-RRO 200x100x6.3
60.001 LG3 ' 1-27.891 0.001 -5.501
0.001 -9.841
-0.051
102)
"Chapter E - Compressive strength am. to E3
111)
60.001 LG1 I-26.551 0.001 -5,491
0.001 -9.841
-0.051
Chapter F - Yielding - Bending about y-axis acc. to F2 - F12
0.001 LG1 '[-15.941 -0.091 -7.031
0.001 -5.731
-0.051
126)
Chapter -Local buckling of HSS section does not apply - aoc. to F7
0.001 LG3 1-17.341 -0.091 -7.04II
O.001 -5.731
-0.051
160)
Chapter G - Nominal shear strength in z-axis - acc. to G2 (G4,G$) - Unstiffened web
60:001 LG3 1<-27.891 0.001 -5.501
0.001 9.841
-0.051
301)
Chapter E --Flexural budding about axis acc. to E3
311)
60.001 LG3 1-27.89� 0.001 5.501
0.001 -9.841
-0.051
Chapter E - Flexural buckling about z axis acc. to E3
60.001 LG3 :j-27.891 0.001 -5.501
0.001 -9.841
-0.051
321)
`
Chapter E - Torsional buckling ace: to E4
\
60.001 LG3 1 -27.89 1 0.001 -5.501
0.001 -9.841
-0.051
332)
Chapter H - Single axis /or biaxial/ flexure with axial compressive force - acc. to H1.1
60.001 LG3 1: -27 891 0.001 5.501
0.001 -9.841
-0.051
334)
Chapter H - Compressive force with single/major axis bending - ace. to H1.3
68,
C O.00o LG5Y2I-RRO202700x6.3 0.081 3.901
0.041 0.001
0.031
100)
Negligible internal forces
25.001 LG1°1 16.811 -0.041-11.971
-0.021 -3.121
-0.131
101)
Chapter D - Tensile strength aoc. to D2
25.001 LG2 1 15.591 0.021 12.111
0.021 3.141
-0.131
111)
Chapter F - Yielding - Bending about y-axis acc. to F2 - F12
8.331 LG1 = [ 7.891 0.011-12.201
-0.021 -1.041
-0.101
126)
Chapter F -:Local buckling of HSS section does not apply - aoc. to F7
0.001 LG2 -6,71 0.101 12.441
�n
0.021 -0.011
0.091
160)
Chapter G - Nominal shear sVength z-axis - acc. to G2 (G4,G5) - Unstiffened web
26.Wl LG1 1 16.811 -0.041-11.971
-0.021 -3.121
-0.131
333)
Chapter H - Single ax(a /or blaxiaU flexure with tensile force - ace. to H1.2
70
G"ros2 cqo RRO 00 010x6.3
LNo.2l
O 890.001 0.011
0.001 16.081
0.13
102)
Chapter E-'ComGprressive strength acc. to E3
210.001 LG1 1-41.68) 0.001 0.011
0.001-16.081
-0.141
111)
Chapter F - Yielding -Bending abouty-axis aoc. to F2 - F12
0.00) LGi-26.541 0,001 5.501
0.001 -9.841
-0.051
126)
Chapter F -Local bu ing of HSS section does not apply - acc. to F7
0.001 ,LG3 1-27.891 0.001 -5.511
0.001 -9.841
-0.051
160)
Chapter G -"Nominal shear strength' in z-axis - am. to G2 (G4,G5) - Unsfi fend web
210.001 LG3 1-42.891 0.001 0.011
0.001-16.081
-0.131
301)
Chapter E - Flexural buckling about -axis acc. to E3
210.001 LG3 ` 1-42.89� 0.001 0.011
0.001-16.081
-0.131
311)
Chapter Flexural blkacMingabout z-axis axis acc. to
.001 001 0.011
0.001-16.081
-0.131
321)
Chapter E - Torsional budding acc. to E4
'210.001 LG3 1-42.891 0.001 0.011
0.001-16.081
-0.131
332)
Chapter H -::Single a s /or biaxial/flexure with axial compressive force - acc. to H1.1
334)
210.001 LG3 1-42.891 0.001 0.011
0.001-16.081
-0.131
Chapter H - Compressive force with single/major axis bending - acc. to 111.3
Cross-s " on ffo�pp 2-RR0200x100x&3
0� " LG31-27.891 0.001 5.501
0.001 -9.841
-0.051
102)
Chapter E - Compre�ve strength aoo. to E3
0.001 LCa1 1-26.551 0.001 5.491
Chapter F - Yielding - Bending about y-axis acc. to F2 - F12
`1
0.001 -9.841
-0.051
111)
0.00 , LG1 -26.551 0.001 6.491
`oceI of does F7
0.001 -9.841
-0.051
126)
Chapter F - buckling HSS section not apply - ace. to
60.001 LG3 1-17.34) 0.091 7.041
0.001 -5.731
0.051
160)
Chapter G - Nominal shear strength m z axis - acc. to G2 (G4,G$) - Unstiffened web
0.001, LG3 '1-27.891 0,001 5.501
0.001 -9.841
-0.051 301)
Chapter E - Flexural buckling about -axls acc. to E3
0.00 LG3 1 27.89� 0.001 5.501
0.001 9.841
-0.051 311)
F
Chapter E - Flexural buckling about z-axis ace. to E3
O.00I LG3 1-27.891 0.001 5.501
0.001 -9.841
-0.051 321)
E Chapter - orsional budding acc. to E4
0.001 LG3 I-27.891 0.001 5.501
0.001 -9.841
-0.051 332)
Chapter H -Single axis /or biaxial/ flexure with axial compressive force - acc. to H1.1
0.001 LG3 1,-27.891 0.001 5.501
0.001 -9.841
-0.051 334)
Chapter H -'Compressive force with single/major axis bending - aoc., to 111.3
76
Eros 20.00 G5 SI-.QR0103 271 -0.081 1.231
0.001
0.031
0.001 100)
Negligible internal forces
10,001 LG1 , 1 9.311 0.051 3.471
0.001
0.001
-0.021 101)
Chapter D -:Tensile strength ace. to D2
RFEM 4.10.2680 - Arbitrary 3D Structures solved using FEM
www.diubal.com
t
Josef Gartner GmbH Page: 50/54
Gartnerstra[3e 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: W073/84.2100 RF-STEEL AISC
Project:,,'C2 <. Structure: BenchnnarkGestell-V3Dowei I Date: 08/OZ/2013
Member
; I oc x
,;Load Forces tkN]
N Vy Vz,
MT
Moments [kNm]
My
Mz
Acc. to
Formula _
0.00 LG4 -20.57 0.03 -3.54
0.001
0.34
-0,02
102)
Chapter E - Compressive strength acc. to E3
O.00i LG3 I 8.61 I 0.06� 3.481
0.001
-0.34I
-0.02I
111)
Chapter F - Yielding - Bending about y-axis acc.. to 2 - F12
0.001 LG7 I 9.31 0.061 3.471
0.001
-0.341
-0.021
126)
Chapter F -Local budding of HSS section does not apply - acc. to F7
20.001 LG4 1-17.221 0.021 -3.661
0.001
-0.051
-0.021
160)
Chapter G - Nominal shear strength inz-axis - ace. to G2 (G4,135) - Unstiffened web
0.00� LG4-20.571 0.03� 3.541
0.001
0.34�
-0.02�
301)
Chapter E -Flexural buckling about -axis acc. to E3
0.001 LG4 1-20.57� 0.031 -3.541
0.001
0.341
-0.021
311)
Chapter E - Flexural buckling about z axis am to E3
0.001 LG4 -20.57 ( 0.031 3.54
0.00
0.34
0.021
321)
Chapter E - Torsional buckling aoc. to E4
r'
0.001:. LG4 j' -20.571 0.031 3.541
0.001
0.341
-0.021
332)
lhap-1 0.001 LGIgsyor bia3flixure with exist compressive force - aO H1.1 lt�I I
-0.34
-0.02
333)
Chapter H -Single axis /or biaxial/ flexure with tensile force - acc. to H1.2
0401 LG4 1:-20.571 0.031 -3.541
0.001
0.341
-0.021
334)
.Chapter H --Compressive force with single/major axis bending - acc. to H1.3
Ti
C' n t1p, 6:QRO 1t10x4
0 LC,5 -1.26I -0.101 1.31
0.001
-0.05I
-0.01
100)
Negligible,intemal forces
WWI LG2 10.041 -0.051 3.491
0.001
-0.311
-0.021
101)
Chapter Tensile�2
30.001 LG3 21 181 -0.061 3.801
0.001
0.331
-0.021
102)
Chapter E - Compressive strength acc. to E3
40.00I LG3 1-24.701 -0.051 3.691
0.001
0.351
-0.02I
111)
Chapter F =Yielding = Bending about y axis acc. to F2 - F72
10.001 LG1 I-13.03-0.081 4.021
0.001
0.291
-0.031
126)
Chapter F -Local buckling of HSS section does not apply - acc. o F7
0.00 LG3 1-13.74I -0.061 4.031
",trial in
0.001
-0.111
-0.031
160)
Chapter G - shear strength z-axis - ace. to G2 (G4 G5) - Unstiffened web
30.00 LG3 I -21.18 -0.061 3.801
0.001
0.331
-0.021
301)
Chapter E - Flexural buckling about -axis acc. to E3
30.001 LG3 1-21.18� -0.061 3.801
0.001
0.331
-0.021
311)
Chapter _Flexural abo-21.118i cis ace.-0t
luckling
30.001 06I 3.801
0.001
0.331
-0.02I
321)
Chapter - orsional buckling acc. to E4
40.001 LG3 i"-24.701 -0.051 3.691
0.001
0.351
-0.021
332)
Chapter H - Single axis /or biaxiall flexure with axial compressive force - ace. to H1.1
40.001 LG2 1 11.581 .0.041 -3.351
0.001
-0.331
-0.021
333)
Chapter H - Single axis /or biaxial/ flexure with tensile force - sec. to H1.2
40.001 LG3 1, -24.701 -0.051 3.691
0.001
0.351
-0.021
334)
r
Chapter H -.Compressive fome,with single/major"a bending - am to H1.3
?38
Cibasa�eCllonLNo til QR0100 31 -0.071 1.311
0.001
0.051
0.001
100)
Negligible internal forces
10.00 LG1 1' 6.1611 0.071 3.761
Chapter D'-Tensile to D2
0.001
0.071
-0.031
101)
strength ace.
0.061 LG4 1-13.75� 0.041 -3.761
0.001
0.301
-0.021
102)
Chapter E - Compressive strength acc. to E3
0.00 LG3 1 5.461 0.081 3.771
0.001
-0.311
-0.021
111)
Chapter F -Yielding -Bending about y-axis acc. to F2 - F12
0.00I LG1 1 6.16� 0.081 3.761
0.001
.0.311
-0.021
126)
Chapter F -Local buckling of HSS section does not apply - ace. to F7
10.001 LG3 1 5.46� 0.061 3.761
0.001
0.071
-0.031 160)
Chapter G-Nominal shear strength m z-axis - aoc. to G2 (G4,G5) - Unstiffened web
0.00 LG4 1-13.75I 0.041 3.761
E lexuralb is to E3
0.001
0.301
-0.021
301)
Chapter - uckling about ace.
0.001 LG4` j -13.76 ' 0.041 3.761
0.001
0.301
-0.021 311)
axisacc0.041
Chapter00T
�a1:b1ucklingabou51 3.761
0.001
0.301
-0.021 321)
Chapter E - Torsional buckling acc. to E4
0.001 LG4 1 -13.751 0.041 3.76I
0.001
0.301
-0.02I 332)
Chapter H .- Single axis for biaxraU flexure with axial compressive force - acc. to H1.1
0.001 LG1 J 6,161 0.081 3.761
0.001
-0.311
-0.02i 333)
Chapter H - Single axis /or biaxial/ flexure with tensile force - ace. to H1.2
0:001 LG4 I-13.751 0.041 -3.761
0.001
0.301 -0.021 334)
s
Chapter H -'Compressive force with single/major axis bending - ace. to H1.3
80
Croas s onAo: 2 = RRO 200x100x6.3
29.29 LG5 1 0.481 0.061 2.861
-0.031
0.631
-0.031 100)
g,
Negligible internal forces
156.191 LG2 1 ' 20.751 0.031-11.361
0.001
-15.581
-0.171 101)
Chapter D:-Tensile strength ace. to D2
205.001 LG1 j 7.17 -0.341 12.581
0.001
23.321 -0.111
111)
Chapter F -Yielding - Bending about y-axis sec. to F2 - F12
0.001 LG1 I' -7.66I 0.161 8.051
0.001
-2.351 -0.081 126)
Chapter F - Local budding of HSS section does not apply - sec. to F7
205.001 LG3 I 6.571 -0.281 12.641
0.001
23.311
-0.111
160)
Chapter G - Nominal shear strength in z-axis - aoc. to G2 (G4,G } - Unstiffened web
20
0.001
22.731 -0.161 333)
CliapterHISingGe axislor biaxvBU flexure with tensiile force aw to H1.2
®. RFEM 4.10.26eo •Arbitrary 3D Structures solved using FEM
www.diubal.com
r
Josef Gartner GmbH Page: 51/54
Gartnerstralle 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 RF-STEEL AISC
Project:,.'A Structure: SanchrYairkGosie'll-WDowel Date: 08/02/2013
it GOVERNING INTERNAL FORCES BY MEMBER
Nie/npe
a] oc x
Load
Foroes,[kN]
Moments
]kNm]
Ace. to
Na
jc
Casa
: ; N Vy V=
MT
- My Mz
Formula
s 81$
Giros =' o NNo i x.0x6;3
.00 nLG1') 16.09� 19.931 10.021
0.001
0.001 0.001 101)
Chapter D - ensile strength aoc. to 2
, 15.801 LG2 1;-16:041 31.591 8.021,
0.001
1.271 5.001 102)
4
Chapter E,- Compressive sirenh ace. to E3
111)
15.80 ( LG3 { T6.08 { 21.25 � 10.061
0.001
-1.591 3.351
sk
Chapter F -Yielding - Bending about y-axis acc. to 2 - F12
r
15.801 11312 { -16.041 31.591 8.021
0.001 :
1.271 -5.001 112)
Chapter F=;Yleidmg - Sending about z axis ace. to 2- F12
7.90 LG1 16.091-19.961-10.021
0.001
-0.791 1.581 126)
Chapter F - Local bu ling of HSS section does not apply - ace. to F7
15.80{ 1132; '-16.04{ 31.591 8.02{
-0.001
1.271 -5.00{ 146)
Chapter F = Local bu ing of HSS section due moment about minor axis - ace. to F7
0.001 LG3 1 16.08-21.211 10,061
0.001
0.001 0.001 160)
Ek
Chapter G - Nominal shear strength n z-axis - acc. to G2 (G4,G5) - Unstiffened
0.001•- ;1 ;-16.021 31.651 8.021
web
0.001
0.001 0.001 161)
,LG2
Chapter G 'Nominal shear strength m y-axis - acc. to G7 (G4,G5) - Unstiffened
web
15.801 LG2 1-16.041 31.591 8.021
0.001
1171 5.001 301)
N
'
Chapter E - Flexural buckling about s acc. to E3
15;80 LG2, {= -16.04 31.591 8.021
0.001
1:271 5.001 311)
Chapter E;-, lexural buckling about z-axis:acc. to E3
15.801 LG2 1-16.041 31.591 8.021
0.001
1.271 5.001 321)
Chapter E - Torsional buckling ace. to E4
15.801 LG2,: I-16;041 31.591 8.021
0.001
1.271 -5.001 332)
Chapt15.801 i glC�e�axls/or biaxas xure withaxial compressive force - aced H1:1
}
I
1.59{ 3.351 333)
Chapter H -Single axis /or biaxial/ flexure with tensile force - acc. to H1.2
7901 LG2 1-16.031 31.631 8.021
0.001
0.631 -2.501 335)
Chapterfi Compressive torte with singte/minor axis.bending - acc. to H1.3
Y?
�
Cross seG n t+lm 3 QR0 60x4
296.26 LG3 1 35.171 0.001 -0.041
0.001
0.001 0.001 101)
„�
Chapter D - ensile strength acc. to 2
0001, . L132 1-43:391 0.001 0.101
0.001
0.001 0.001 102)
,
Chapterf-'Com�essive strength ace. to E3
0.001
0.081 0.041 111)
126.971 LG5 1 7.481 -0.01 I 0.021
Chapter F ielding Bending about ace. to 2 - F12
- - y-axis
84 65]- LG2, 1,-43.331 0.001 0.051:
0.001
0.061 0.001 126)
s;
Chapter F - Local buckling of HSS section does not apply - aoc. to F7
r
0.00L LG2 1-43.391 0,001 0.101
0,001
0.001 0.001 301)
t
Chapter E -Flexural buckling about -axis ace. to E3
0.001 ; LG2. 1 -43 391 0.001 0.101
0.001
0.001 0.001 311)
fi }
Chapter E - Fiexuralbudding about z -axis am to E3
0.001 LG2 1-43.391 0.001 0.101
0.001
0.001 0.001 321)
Chapter E - orsional buckling act. to E4
126971, LG2, -43 291 0.001 0.021
0.001
0.081 0.001 332)
'
Chapter H,=;Single axis°tor biaxialt flexure with axial compressive force - act:
to H1.1
169.291 LG5 7.501 0.01[ -0.021
0.001
0.081 0.041 333)
A W MR
Chapter H - Single axis /or biaxial/ flexure with tensile force - ace. to H1.2
126:97{ LG2,, {-43:291 0.001 0.021
0.001_
0.081 0.001 334)
i
Chapter H 'Compressive force with single/major axis bending - act. to H1`.3
f $T
`
Cross ono. 9 RR0 200x100x6.3
1.07) 10.08 {
144.20 L 1 8.95
Bending to 2 F12
0,041
16.131 9.821 111)
Chapter F - fielding - about y-axis ace. -
144,201, LG1, 1 -0.641 9.311-10.041
0.041
-16.071 10.611 112)
NE,
chapter F==xieldipg - Bending about z axis act. to F2 - F12
0.001 LG1 I -0.551 9.791-10.051
HSS does F7
0.001
-1.581 3.151 126)
Chapter F -Local budding of section not apply -ace. o
144:20II LG1 0.641- 9.311'-10.041
'
0.041
16.071-10.611 146)
Chapter F.= Local.buc dh of HSS section due moment about minor axis
- sec. to F7
0.001 LG3 1.001 9.311 10.081
0.00
1.59 3.351 160)
Chapter G - Nominal shear strength in z-axis - aoc. to G2 (G4,G5) - Unstiffened web
0.001 LG1 ' 1'-0.55,1 9.791-10,051
0.001
-1.581 3.151 161)
Chapter.G.--Nominaf shear strength in y-axis - ace.. to G7 (G4.G5) - Unstiffened web
s
144 201 LG1 064 9.311-10.041
0.041
-16.071-10.611 331)
Chapter H Biaxial bending without axial forces - ace. to H1.1
�86
CYossrsee on No' 4 �' RRt) 200x100x6.3
10.13 LG5 0.381 3.941
0.001
0.351 -0.011 100)
1 -0,091
Negligible•interrial fors
91.20) LG2 1-17.691 -0.051-13.631
0,001
-11.511 -0.081 102)
Chapter E - Compressive strength acc. to E3
-0.081
91.201 LG2 1:-17.691 -0.051-13.631
Chapter F > Yfeldfng - Bending about y-axis acc. to F2 - F12
0.001
-11.511 111)
10.131 LG1 1 0.691 0.02, 12.391
F buckling HSS does acc. to F7
0.001
1.201 -0.051 126)
Chapter -Local of section not apply -
91101 1G2 1r-17:691 -0.051-13.631
0.001 :
-11.511 -0.081 160)
Chapter G, Nominal shear Wenin z-axis -ace: to G2 (G4,G5) - Unstiffened web
91.201 LG2 1 691 0.001
-11.511 -0.081 301)
1
i
ar s
( -0.051-13.631
Chapter E - Flexural buckling about axis ace. to E3
91.201_=LG2; 1:-17[69� -0.051'-13,631.
0.001
-11511 -0.081 311)
i c
Chapter E - lexuraftiucWing about z-axis acc. to E3
91.201 L02 1-17.691 -0.051-13.631
0.001
-11.511 -0.081 321)
Chapter E - Torsional buckling acc. to E4
A
9120,1 LG2 i--17.691 -m051-13.631
0.001
-11.511 -0.081 332)
Ctispter H -,Single arcs /or biaxial/ flexure with axial compressive force -ace. to H1.1
IN
ggg i RFEM 4.10.2680 - ArbRrary 3D Structures solved using FEM
www.diubal.com
r
Josef Gartner GmbH Page: 52/54
Gartnerstra& 20, 89423 GUNDELFINGEN Sheet: 1
Tel: 09073/84-0 - Fax: 09073/84-2100 RF-STEEL AISC
Project:
Structure: BenchmarkGestelt-V3Dowrei I Date: 08/02/2013
1u18t+tber
�:'lAc x .. Load Forces [kNI
Moments [kNm]
Am. to
1Vo
Case N Vy VZ
MT
My MZ
Formula
91.201 LG2 1 -17,69 -0.05 -13.63
0.00
-11.51 -0.08
334)
Chapter H - Compressive force with singletmajor axis bending -
acc. to H1.3
88
omNo. 4 - RRO 200x100x6.3
189 12 LG4 24.231 -0.041 3.791
0.001
3.951 0.151 101)
Cha268801 eLG1 strength
-56.8512 0,141 1.591
0.001
13.801 0.311 102)
Chapter E -Compressive strength ace. to E3
258.801 . LG1 -1 .56.86 0.141 1.591
0.001
13.801 0,311 111)
Chapter F - retding Bending about y axis ax. to F2 - F12
0.00 LG1 1-27.211 -0,021 -2.951
�ocal
0.001
11.341 -0.101 126)
Chapter F - budding of HSS section does not apply - sec. to F7
160)
Chapter0.001
G INomGin 1 hear str ngth in z axis acc to G2 (G4 G�) - Unstiffenedf web
-11.511 -0.041
268.801 LG1. 1-56.851 0.141 1.591
0.001
13.801 0.311 301)
x
Chapter E - Flexural budding about -axis sec. to E3
258.801: LGt -1-56.85� 0,141 1.691
0.001
13.801 0.311 311)
Chapter E � Flexural budding about z axis aoc. to E3
258.801 LG1 1 -56.85 0.141 1.591
0.001
13.801 0.311 321)
Chapter E - Torsional budding acc. to E4
258.801 LG1 '!-56.851 _ 0.141 1.591
0.001
13.801 0.311 332)
liapter H =:Single axis /or biaziaU flexure with axial compressive force - ace. to H1.1
0.001 LG2 1 16.871 -0.011 7.541
0.001
-11.511 -0.041 333)
Chapter H - Single axis /or biaxial/ flexure with tensile force - acc. to H1.2
258.801 LG1 1-56.851 0.141 1.591
0.001
13.801 0.311 334)
Chapter H =Compressive force with single/major axis bending - acc. to H1.3
90
Cros50.001 s4ection G41'I'RRtl200.7OOx6.3 14.481 23.161
0.001
0.001 0.001 101)
Chapter D - Tensile strength acc. to 2
0.0011 LnG3 1 `18.551
0.031
11.131-22.081 102)
n11�6.611 .toE3�.661
Ch a
0.00II LG4 1 15.651 14.661 23.181
Yiaiding F2 F12
0.011
-13.901 8.741 111)
Chapter F - -Bending about y-axis aoc. to -
0.00 LG1 -15.58�-40,311 -18.651
0,031
11.191-24.291 112)
.I
Chapter F -Bending about z-axis acc. to P2 - F12
-aiding
0.001 LG1 I-15.58)-40.311-18.651
0.031
11.191-24.291 126)
Chapter F - Local buckling of HSS section does not apply - acc.
to F7
0.001 LGII .I-15.581-40.3'11-18.651
Chapter F�={.ocal buckling HSS due
0,031
to F7
11.191 24.291 146)
of section moment about minor
0.001 LG4 1 15.65j 14.661 23.181
Chapter G - Nominal shear strength m z-axis - ace. to G2 (G4,G5)
axis - acc.
0.011
- Unstiffened web
-13.901 8.741 160)
60.00[ LG1 (-:-15.30� 40.611-18.661
0.001
0.001 0.001 161)
Chapter O -'Nominal shear strength in y-axis - acc. to G7 (G4,G5)
- Unstiffened web
0.00� LG 1-15.611-36.661-18.551
0.031
11.131-22.081 301)
Chapter E - lexural budding about axis sec. to E3
0.001 LG 1-15.611-36.661-18.651
0.031
11.131-22.081 311)
Chapter E ,'Flexural budding about z is acc. to E3
0.001 LG3 1 -15.61 36.661-18,551
0.031
11.131-22.081 321)
r
Chapter E -Torsional budding acc. to E4
0.00 LG5 '[ -5.231-24.861-14.511
-Blaxial forces'-
0.021
8.741-14.981 331)
Chapter Hbending out axial acc. to H1.1
0.001 LG1 1-15.581-40.311-18.651
0.031
11.191-24.291 332)
Chapter H -Single axis /or biaxdal/ flexure with axial compressive force - acc. to H1.1
0.001 LG4 1_ 15.651 14.661 23.181
0.011
-13.901 8.741 333)
A.
ChapterH - Single axis /or biaxtal/fiexure with tensile force;- acc. to 111.2
PARTS LIST BY MEMBER
t3arl�
CrossSedion"Description
Number
Members
Length
[m]
ot: Length
Iml
Surf. Area
[m21
Volume
[m31
Jnit Weighl
[kg/m1
Weight
[kgl
ot. Weigh
[t]
2 - RRO 200x100x6.3
2
2.05
4.10
2.37
0.01
27.63
56.65
0.113
-2
2-- RRO 200x100x6.3
4
0.26
1,00
0.58
0.00
27.63
6.91
0.028
3 '
2- RRO 200x100x6.3
2
3.05
6.10
3.53
0.02
27.63
84.28
0.169
2 - RRO 200x100x63
2
2.10
4.20
2.43
0.01
27.63
58.03
0.116
5
1 -RRO 206x100x6.3
2
0.16
0.32
0.18
0.00
27.63
4.37
0.009
.,
3 - QRO 60x4
2
2.96
5.93
1.38
0.01
6.92
20.51
0.041
7
1 - RRO 200x100x6.3
2
1.44
2.88
1.67
0.01
27.63
39.85
0.080
$
4 - RRO 200x100x6.3
2
0.91
1.82
1.05
0.01
27.63
25.20
0.050
9
4 - RRO 200x100x6.3
2
2.59
5.18
2.99
0.02
27.63
71.51
0.143
1,- RRO 200x100x6.3
2
0.60
1.20
0.69
0.00
27.63
16.1
0.033
5 - ORO t 00x4
4
0.20
0.80
0.31
0.00
11.93
2.39
0.010
12
5 - ORO 100x4
2
0.40
0.80
0.31
0.00
11.93
4.77
0.010
15
2 - RRO 200xl00x6.3
2
0.60
1.20
0.69
0.00
27.63
16.58
0.033
Vy
-.:4d ...
-Donv`! Q
7:)M
4
d7fl
d7A
7d1
nni
77 R1
44R AS
n4in
® 1 RFEM 4,10.2680 - Arbitrary 3D Structures solved using FEM
www.diubal.com
F
Josef Gartner GmbH Page: 53154
GartnerstraBe 20, 89423 GUNDELFINGEN Sheet: I
Tel: 0W73/84-0 - Fax: 09073/84-2100 GRAPHICS
kpro—;rA Structure: BenchmarkGestell-V30owel Date: 08/02/2013
* RF-STEEL AISC - MEMBERS DESIGN RATIO, CAI
RF-STEEL AISC CAI
Members Design Ratio
la
1.00
0.90
0.80
0.70
0.50
0.50
0.40
0.30
020
0.10
0.00
Mat : 014
Min : OAO
Members Max Design Ratio: 0.74
Isometric
0. 1 8
® RFEM 4.10.2680 - Arbitrary 313 Structures solved using FEM
www.diubal.com