Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
15020115
CITY OF CUPERTINO BUILDING PERMIT BUILDING ADDRESS: 10395 FARALLONE DR CONTRACTOR: PAB CONSTRUCTION INC PERMIT NO: 150201 15 OWNER'S NAME: ILANGO GANGA & VIJI ILANGO TRUSTEES 21060 HOMESTEAD RD STE 216 DATE ISSUED: 06/15/2015 OWNER'S PHONE- 4082555709 CUPERTINO, CA 95014 PHONE NO: LICENSED CONTRACTOR'S DECLARATION r r PLUMB License Class_ Lic. # Q R" Z, BUILDING PERMIT INFO: BLDG ELECT r F r MECH RESIDENTIAL COMMERCIAL 1 1 /. 1 Contractor _Q A! �yt�'I r V �1' M n Date 9 Q _ `:5— x I hereby arm that I am licensed under the provisions of Chapter 9 ffi JOB DESCRIPTION: CONSTRUCT ONE STORY ADDITION (591 SQ I`f) WITH (commencing with Section 7000) of Division 3 of the Business & Professions COVERED PORCH (66 SQ FT); INTERIOR REMODEL (760 SQ FT); ELECTRICAL PANEL UPGRADE (200 AMP); REROOF Code and that my license is in full force and effect. I hereby affirm under penalty of perjury one of the following two declarations: I have and will maintain a certificate of consent to self - insure for Worker's Compensation, as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. I have and will maintain Worker's Compensation Insurance, as provided for by Sq. Ft Floor Area: Valuation: $250000 Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. APN Number: 36931020.00 Occupancy Type: APPLICANT CERTIFICATION I certify that I have read this application and state that the above information is correct. 1 agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city to enter upon the above mentioned property for inspection purposes. (We) agree to save PERMIT EXPIRES IF WORK IS NOT STARTED indemnify and keep harmless the City of Cupertino against liabilities, judgments, costs, and expenses which may accrue against said City in consequence of the WITHIN 180 DAYS OF PERMIT ISSUANCE OR granting of this permit. Additionally, the applicant understands and will comply lations Cupertino Municipal Code, Section 180 DA FROM LAST CALLED INSPECTIO with all non - points urce a per the 9.18.cc � �c' Signature Date D —�a�,S Issued by. Date: ❑ WNER- BUILDER DECLARATION RE- ROOFS: I hereby affirm that I am exempt from the Contractor's License Law for one of All roofs shall be inspected prior to any roofing material being installed. if a roof is the following two reasons: installed without first obtaining an inspection, 1 agree to remove all new materials for 1, as owner of the property, or my employees with wages as their sole compensation, inspection. will do the work, and the structure is not intended or offered for sale (Sec.7044, Business & Professions Code) Signature of Applicant: Date: I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec.7044, Business & Professions Code). ALL ROOF COVERINGS TO BE CLASS "A" OR BETTER 1 hereby affirm under penalty of perjury one of the following three declarations: I have and will maintain a Certificate of Consent to self - insure for Worker's HAZARDOUS MATERIALS DISCLOSURE Compensation, as provided for by Section 3700 of the Labor Code, for the I have read the hazardous materials requirements under Chapter 6.95 of the performance of the work for which this permit is issued. California Health & Safety Code, Sections 25505, 25533, and 25534. I will maintain I have and will maintain Worker's Compensation Insurance, as provided for by compliance with the Cupertino Municipal Code, Chapter 9.12 and the health & Section 3700 of the Labor Code, for the performance of the work for which this Safety Code, Section 25532(a) should I store or handle hazardous material. permit is issued. Additionally, should I use equipment or devices which emit hazardous air I certify that in the performance of the work for which this permit is issued, I shall contaminants as defined by the Bay Area Air Quality Management District I will maintain compliance with the Cupertino Municipal Code, Chapter 9.12 and the not employ any person in any manner so as to become subject to the Worker's health & Safety Code, Sections 25505, 25533, and 25534. Compensation laws of California. If, after making this certificate of exemption, I become subject to the Worker's Compensation provisions of the Labor Code, 1 must Owner or . th iz d ;9 t: forthwith comply with such provisions or this permit shall be deemed revoked. Date: t S IA� APPLICANT CERTIFICATION CONSTRUCTION LENDING AGENCY 0 I certify that l have read this application and state that the above information is I hereby affirm that there is a construction lending agency for the performance of work's correct. I agree to comply with all city and county ordinances and state laws relating for which this permit is issued (Sec. 3097, Civ C.) to building construction, and hereby authorize representatives of this city to enter Lender's Name upon the above mentioned property for inspection purposes. (We) agree to save indemnify and keep harmless the City of Cupertino against liabilities, judgments, Lender's Address costs, and expenses which may accrue against said City in consequence of the granting of this permit. Additionally, the applicant understands and will comply with all non -point source regulations per the Cupertino Municipal Code, Section ARCHITECT'S DECLARATION 9.18. 1 understand my plans shall be used as public records. Signature Date Licensed Professional CONSTRUCTION PERMIT APPLICATION COMMUNITY DEVELOPMENT DEPARTMENT • BUILDING DIVISION 10300 TORRE AVENUE • CUPERTINO, CA 95014 -3255 Gl��Z� (408) 777 -3228 • FAX (408) 777 -3333 • building(a)cupertino.org I—I AnT)TTTnN 17 AT.TFRATTON. /TT FI RF.V1.g1nN /T)FFFRRFT-) nRTC'rTNAT.PFRMTTii PROJECT ADDRESS /iW,5; �� / �yj 6 _ APN # �E OWNER NAME �% PHONE -MAIL � � � � � ® � f (v STREET ADDRESS C, r(E7 _V C CITY, STATE, ZIP O FAX �I CONTACT NAME / /' �! PHONE�� ��` ��� E -MAIL ` - , A� � L" STREET ADDRESS CITY, STATE, ZIP FAX ❑ OWNER ❑ O'WNER- BUILDER ❑ OWNTER AGENT ❑ CONTRACTOR ❑ CONTRACTOR AGENT ❑ ARCHITECT ❑ ENGINEER ❑ DEVELOPER ❑ TENANT CO T*RACTOR NAME 7W LICENSE NTJl4BER LICENSE TYPE BUS. LIC # COMPANY NAME E -MAIL FAX STREET ADDRESS CITY, STATE, ZIP PHONE ARCHITECT/ENGINEER NAME LICENSE NUMBER BUS. LIC # COMPANY NAME E -MAIL FAX STREET ADDRESS CITY, STATE, ZIP PHONE �j DESCRIPTION OF WORK � )� vL � ®/ S /i - ®v EXISTING USE PROPOSED USE I I CONSTR TYPE # STORIES rj�i y��K � � /, v 'EEX+IISTTGG►:'+""'///,��� USE TYPE OCC. SQ.FT. VALUATION (S) AREA -7� s� NEW FLOOR AREA DEMO AREA TOTAL NET AREA 1� / � BATHROOM REMODEL AREA $-y KITCHEN REMODEL AREA //STS OTHER / REMODEL AREA / p PORCH AREA DECK AREA TOTAL DECKIPORCH AREA GARAGE AREA: DETACH 6/_ ❑ ATTACH # DWELLING UNTr : IS A SECOND UNIT YES SECOND STORY ❑YES BEING ADDED? O ADDITION ?l0 /T PRE-APPLICATION ��❑) ES IF YES, PROVIDE COPY OF IS THE BLDG AN ❑�YFS TOTAL V.4LUAT10N: PLANNTNGAPPL #ENO PLANNII.GAPPROVALLETTER EICHLERHOME ?t�0 - r�-.�Trw F >t;. x� _`� a� r� :. O By my signature below, I certify to each of the following: I am the property owner or authorized f To act o erty o aa[er's b half. I have read this application and the information I have vided is correct. I haver d the Description of Work and verify it is accurate. I agree to comply With all applicable local ordinances and state laws relating to onstructi aut o ze representatives of Cupertino to enter the above-identified for inspection property purposes. Si.-natureof App] icanU nt: Date: SUP LEM TA FORA ATIO UIRED . h ���- „ PI:AA'CFIECKTYPE n� � �ROUTII�GSLIP r New SFD or Mul nil 'ellings: Apply for demolition permit for — • exlshng bu[ldin -(s).' Demolition permit IS required prior to issuance of build O] ER THE COUNTER s * 4 D]?�G PLAN REVIEW a r tx permit for new building. ' 0 EXPRESS - LA NII�G PLAT\ REVIEW Commercial B1dgs: Provide a completed Hazardous Materials Disclosure P STANDARD r x PU IC3VORKS ".-3" _ form if any Hazardous Materials are being used as part of this project. .. .a t + . } w Copy of Planning Approval Letter or Meeting with Planning prior to _ submittal of Building Permit application.T7AIQRx u, T ITARYiER*DISTUICT a r Q w EI\IIROn1MENTAli,HE4LTH. °`.,.,§ =, BldgApp_ OII.doc revised 06/21/11 CITY OF CUPERTINO FEE ESTIMATOR — BUILDING DIVISION iaADDRESS: 10395 Farallone Dr DATE: 0311812015 REVIEWED BY: Sean PC FEE ID APN: BP #: 15020115 *VALUATION: 1$250,000 *PERMIT TYPE: Building Permit PLAN CHECK TYPE: Addition PRIMARY SFD or Duplex USE: 2nd Unit? Yes . No OTC. 0 Yes (F) No PENTAMATION 1 R3SFDADD PERMIT TYPE: WORK Construct one story addition 591 sq ft with covered porch 66 sq ft • Interior remodel 760 sq ft SCOPE Electrical panel upgrade (200 amp); Reroof (1800 sq ft). OCCUPANCY TYPE: TYPE OF CONSTR. FLR AREA s.f. PC FEES PC FEE ID BP FEES BP FEE ID R -3 (Custom) II- B,111- B,IV,V -B 657 $2,654.00 1R3PLNCK $1,666.00 1R31NSP Elec. h7sp. Fee $0.00 200 amps $48.00 Electrical IBELEC200 Services Permit Fee: $1,666.00 Suppl. Insp. Fee:0 Reg. Q OT 0.0 hrs $0.00 EiK s.f. Re -roof $306.00 IREROOFRES PME Unit Fee: $0.00 PME Permit Fee: $48.00 Construction 'Tax: TOTALS: 657 $2,654.00 lc�n71 /'l1.Pll "edtll(? �'tt ?: $1,666.00 MECH, HOURLY 0 Yes 0 No PLUMB, HOURLY Q Yes Q No ELEC, HOURLY ® Yes Q No Mech. Plan Check Plumb. Pian Check Elec. Plan Check 0.0 1 hrs $0.00 it / PPe,•mir.Fee: Plronh. Permit Fee: Elec. Permit Fee: IEPERMIT rX1,/','h' 14ec:h. Inssp. Other Plumb h,.sp. Other Elea Insp. 0.0 hrs $48.00 Irzsp. Fee: Ph,rnb. Insp. &Ee: Elec. h7sp. Fee NOTE: This estimate does not include fees due to other Departments (i.e. Planning, Public Works, Fire, Sanitary Sewer District, School District. etc.). These fees are based on the nreliminary information available and are only an estimate. Contact the Dent for addn'1 info. FEE ITEMS (Fee Resolution 11 -053 E : 7/1113) FEE QTY/FEE MISC ITEMS Plan Check Fee: $2,654.00 = s.f. $575.00 Remodel, Other IREMRESOTH Suppl. PC Fee: Q Reg. Q OT 1 0.0 1 hrs $0.00 PME Plan Check: $0.00 200 amps $48.00 Electrical IBELEC200 Services Permit Fee: $1,666.00 Suppl. Insp. Fee:0 Reg. Q OT 0.0 hrs $0.00 EiK s.f. Re -roof $306.00 IREROOFRES PME Unit Fee: $0.00 PME Permit Fee: $48.00 Construction 'Tax: lc�n71 /'l1.Pll "edtll(? �'tt ?: Work Without Permit? Yes (F) No $0.00 Advanced Planning Fee: IPLLONGR $91.98 Select a Non - Residential Building or Structure Q 0 i Travel Documentation Fee: ITRAVDOC $48.00 Strong Motion. Fee: IBSEISMICR $32.50 Select an Administrative Item Bld�l Stds Commission Fee: IBCBSC $10.00 SUBTOTALS: $4,550.48 $929.00 TOTAL FEE: $5,479.48 Revised: 02/14/2015 �1 CITY OF CUPERTINO FEE ESTIMATOR — BUILDING DIVISION ia, ADDRESS: 10395 farallone dr DATE: 02/18/2015 REVIEWED BY: Mendez PC FEE ID APN: BP #: 'VALUATION: 1$250,000 *PERMIT TYPE: Building Permit PLAN CHECK TYPE: Addition PRIMARY SFD or Duplex USE: I 2nd Unit? 0 Yes . No OTC. O Yes ONo PENTAMATION 1R3SFDADD PERMIT TYPE: WORK 2 410 sq ft first floor addition to an e 2 story sfdwl; 66 sq ft to covered porch; remodel interior of SCOPE Suppl. Insp. Fee:Q Reg. Q OT OCCUPANCY TYPE: TYPE OF CONSTR. FLR AREA s.f. PC FEES PC FEE ID BP FEES BP FEE ID R -3 (Custom) II- B,111- B,IV,V -B 2,476 $2,963.45 1R3PLNCK $2,774.65 IR3INSP Dec. Insp. Fee: $2,774.65 Suppl. Insp. Fee:Q Reg. Q OT 0.0 hrs $0.00 PME Unit Fee: $0.00 PME Permit Fee: $0.00 construction Tax: ,1c1tninistrative Fete: 0 G Work Without Permit? © Yes No $0.00 TOTALS: 2,476 $2,963.45 7i�ui,c�L.Dc >c•iarnc�rzlatiorr Fees: $2,774.65 Strong Motion Fee: IBSEISMICR MECH, HOURLY 0 Yes (E) No ]PLUMB, HOURLY Q Yes Q No ELEC, HOURLY Q Yes Q No Nfech. Plan Check Plinth. Plan Check Elec. Plan Check Much Permit Fee' plumb. Permit Fee: Elec. Permit Fee: Omer Hoch. Insp. Other Plumb Insp- Other I:Yce. Insp. ,Tech. Insp. F'ee: Plumb. Insp. Fie: Dec. Insp. Fee: NOTE: This estimate does not include fees due to other Departments (Le. Planning, Public Works, Fire, Sanitary Sewer District, School District, etc.). Thesefees are based on the preliminary information available and are only an estimate. Contact the Deptfor addn'l info. FEE ITEMS (Fee Resolution 11 -053 1ff: 711113) FEE QTY/FEE MISC ITEMS Plan Check Fee: $2,963.45 760 s.f. Remodel, Other $575.00 IREMRESOTH Suppl. PC Fee: Q Reg. Q OT 0.0 hrs $0.00 PME Plan Check: $0.00 Permit Fee: $2,774.65 Suppl. Insp. Fee:Q Reg. Q OT 0.0 hrs $0.00 PME Unit Fee: $0.00 PME Permit Fee: $0.00 construction Tax: ,1c1tninistrative Fete: 0 G Work Without Permit? © Yes No $0.00 Advanced Plannin Fee: IPLLONGR $346.64 Select a Non - Residential 0 Building or Structure � 7i�ui,c�L.Dc >c•iarnc�rzlatiorr Fees: Strong Motion Fee: IBSEISMICR $32.50 Select an Administrative Item 1 1 Bldg Stds Commission .Fee: IBCBSC $10.00 SUBTOTALS: $6,127.24 $575.00 TOTAL FEE: $6,702.24 Revised: 02/14/2015 I BUILDING ENERGY ANALYSIS REPORT I PROJECT: CUPERTINO Ganga Additior F3 tj OM i tip nr;oartment ^ 10395 Farallone D Cupertino, CA 950 r 7 M5 REVIEVvEl-) H-)Fc UOUIE COMPLIANCE Project Designer- Reviavvuu By R H Associates 22867 Sunset Ridge Road Auburn, CA 95602 (530) 268-3055 Report Prepared by: Elizabeth Smithwick CompuCalc 10556 Combie Road PIVIB 6335 suBmqTAL Auburn, CA 95602 (530) 268-8722 u2 T �.� M Vill Job Number: MAR Ganga Addition Date: 3/20/2015 The EnergyPro computer program has been used to perform the calculations summarized in this compliance report. This program has approval and is authorized by the California Energy Commission for use with both the Residential and Nonresidential 2013 Building Energy Efficiency Standards. This program developed by EnergySoft, LLC — www.energysoft.com. I EnergyPro 6.4 by EneigySoft User Number. 6226 ID: Ganga Addition T T O r LL 0 � O CL LL a L � g; O N O N m LL N LP O) O E_ H d !C C m v V c O Q cc fA c cc d E m z V 0 IL N N T m c Q v N C U) d D c O !C _u !C v U F w w U -) U v 0 a N cr w 2 6 E F- O c O to 0) K E z O M m v cr 00 V V ai O N M O Ln 0 N M a M c c a tD t O n a w V O1 I? vi 0 N N O oc U c 0 t, O O_ N K d V 9 rn c0 n d c m d o 0 0 0 th p ` > C'� (D c) 1 Cl) W a s �? a o 0 � O 2 O N a) c N 6 a E t6 ° d 'O _ n O U U W M c W Obi c+) N } o n N 0 > u) O :°. m o .y > L d V c m 0 j�0 O N m �= V = o e LL) ,+� O OWN = o .0 E y O O Z y O m w O E z d Q 7 m z o m L .N c7 > E O Z O O L a U O a LL A O O v O r r r r r N v m c O O c O C O 0 Q m f6 CD N >, c Q N � =O m LL Lo o .- o c - L) E (m N U� T E LL N m c Q O c m C O v Q N m 1- N rn LO O z O E m Z C) �+ o 0 d •o la V m o ''a A J V a. U CL jV c N l0 E �>' = 9 a a� o V d¢¢ U. a o V r i Q O u v 0 Q ¢ Zo- c w Q 4 N a n S'� •� M rn O 0 O 0 O 0 O 0 n p y N O O O O O O LL Z M v z_ o J M E W d, y d z r qC-4-1 T ID 00 O ]C4 W O O O O O r r r r C7 Ir »+ U F w w U -) U v 0 a N cr w 2 6 E F- O c O to 0) K E z O M m v cr 00 V V ai O N M O Ln 0 N M a M c c a tD t O n a w V O1 I? vi 0 N N O oc U c 0 t, O O_ N K d 9 CL d c m d o 0 0 0 p ` > C'� (D c) 1 W a s �? a o 0 0 2 'O _ > O a a A v W v m O c O y d N a n S'� •� M rn O 0 O 0 O 0 O 0 n p y N O O O O O Z M v o M E d, y d Ir »+ W w V �' A > t0 O y ap N O O O O V O cp M O N _ m a o N N N �. C o •E N m U) W a > o 0 c7 c: a o z W .O A w N T) y 9 -. i0 C M 0) ' OD ccq _ N O O G 'w tL' _!� C O L y m 0 N N O O N - �.. ` . � U) •�'� _ ar a m �. N ;2! E d *' ., O O iL y. E o O t m c ' CL E °..':: O V d tm L 10 m y O' o. a O a m V V _ m E O rn aL y c c .O o= l0 m V d = W N W ' a ~°c c Nm N N a W a E O: 0 W u z O O Q O J CL 2 O U F w w U -) U v 0 a N cr w 2 6 E F- O c O to 0) K E z O M m v cr 00 V V ai O N M O Ln 0 N M a M c c a tD t O n a w V O1 I? vi 0 N N O oc U c 0 t, O O_ N K r r � r o CL a N dl tm m LJL U d f O N N L u f0 c Z> c LL t LO i < 0 f ui i � C t t C � O t � � u 7 � � U ! I, ' � y im E s QI N f• O to 0 o `m as M.5 E% Z'i C O y A E - m C to t0 i W 0 G 0I ` C a o Ev Z y QI r- 0 in O '"s a`s E z y O a m to 0 0 d d E 7 Z C 3 O to o p c a E m Z ,. uj rn A C O ui N O (CO 7 O LL N O m y c C N O Mn O O a Q m � N o O LL m Z CL g m m U LL p C1 U CL C7 aNi Z -O 0 O J_ m U C_ co tb w N U � W O U O N 0 J, 0 N N N .- y c ON li CL U p fr n W 2 K y m t!1 to 1 0 +m m cy Q C > Qj a ' C W O O C ui _T .� c E y w c Q C Q ' O a co LL _^ O ,C cc w > y. E t0 V j (9 A s fn v C m E a N U C O O O to c to 0 L m Z :. W 3 a im I V t6 O E C L N 7 O N W O ++ C U V J > a L) m L t- C N c ' � y im E s QI N f• O to 0 o `m as M.5 E% Z'i C O y A E - m C to t0 i W 0 G 0I ` C a o Ev Z y QI r- 0 in O '"s a`s E z y O a m to 0 0 d d E 7 Z C 3 O to o p c a E m Z ,. uj rn A C O ui N O (CO 7 O LL N O m y c C N O Mn O O a Q m � N o O LL m Z CL g m m U LL p C1 U CL C7 aNi Z -O 0 O J_ m U C_ co tb w N U � W O U O N 0 J, 0 N N N .- y c ON li CL U p fr n W 2 K y m t!1 to m 0 m Ln O > Qj a Q " ui _T E c m C c O m c y (U _^ O 7 n cc w E O U C O W c m rn o � I ,c L m CL I 0 01 in C C N c C °-' A m d c ayi o a as U as a -O U 0 E CU M -O �o to w c, c m Ol d fn E O: O c ,O (V4,t v t m d'+ C U cu to m m n� m c N s'v s V OU Cl) � °nay � T ir W ,OU €'tD 2 U c c aai fa U- W : I�afca m: - u to w a c to (U 7] N E � 5 O ti a U w ^� N C O �.; ,t0 m cL �E°s >- oa 'y > E Q E c o E , ay l3 C m 0 w y E m ? z U) &'C " in in Lu )= a j c > E ° is I S An - N d 0 > y �_ O d Ca d y 0 0 d V' N O C O O _Z N O U) °a zuz z E W 2 o O ' ' O ' s- ' � y im E s QI N f• O to 0 o `m as M.5 E% Z'i C O y A E - m C to t0 i W 0 G 0I ` C a o Ev Z y QI r- 0 in O '"s a`s E z y O a m to 0 0 d d E 7 Z C 3 O to o p c a E m Z ,. uj rn A C O ui N O (CO 7 O LL N O m y c C N O Mn O O a Q m � N o O LL m Z CL g m m U LL p C1 U CL C7 aNi Z -O 0 O J_ m U C_ co tb w N U � W O U O N 0 J, 0 N N N .- y c ON li CL U p fr n W 2 K d m t!1 ca m 0 m Ln N > Qj o a m rn E c 0 c O rn c to c y 0 _^ O m cc w T �- O m C C W c -. m rn o ,c L 0 in C C ti C °-' A m G c ayi o o U -O U CU M -O �o c, c m w fn O: (V4,t t m d'+ cu to n� m c w: s'v s V OU � °nay � T ,OU €'tD U c c fa U- W I�afca m: - in c to 7] 5 ti a U c °a �.; m cL �E°s W �r rf ay l3 C (USgN � C j o O (D yr , s- � C c to N 'oL E N D1 y O T F: m .O m a Iii ,y a C - 0` , .L 8 u) W � ua c a E O m -a U y T C H t � N 1W Z. � � 0 c w t-. o ' � y im E s QI N f• O to 0 o `m as M.5 E% Z'i C O y A E - m C to t0 i W 0 G 0I ` C a o Ev Z y QI r- 0 in O '"s a`s E z y O a m to 0 0 d d E 7 Z C 3 O to o p c a E m Z ,. uj rn A C O ui N O (CO 7 O LL N O m y c C N O Mn O O a Q m � N o O LL m Z CL g m m U LL p C1 U CL C7 aNi Z -O 0 O J_ m U C_ co tb w N U � W O U O N 0 J, 0 N N N .- y c ON li CL U p fr n W 2 K O = O G pO O 0 O C O O O o Z U` CD Z t u-� n 0 o Q i _7 t t N 't u a E .i Z � c t O 1 - OI) a� < z 3 1 1 S s 1 i 1 0 0 f P s d W t!1 0 Ln I Qj O is C 0 c O .A 1pm _^ O cc w O = O G pO O 0 O C O O O o Z U` CD Z t u-� n 0 o Q i _7 t t N 't u a E .i Z � c t O 1 - OI) a� < z 3 1 1 S s 1 i 1 0 0 f P s O r L w Ir O CL M CD 47 r �p LL a L) T m C Q CV N C O 0 C Q O c •° co � y E M = Z yam-, V � d 3 O 2 m IL 0 U cn 00 W d' Ln U_ � O U O rN m 0 vn ti ry -° c o°1 d L O W CL ii _ cc 01 lD V1 O Ln o E � LL U1 U Y � O C � Y � y Y^ O 00 O. w w N E d N N n o L m 2 m io 3 E 10 y c N (n N (n N (n 2 O Q O V d m L o U a w du W II1 2 a' tu a O O N N m LL . LO LO m L O N d E R Z E Q Q Q M N N N N 2 O a N N N CN 0 0 0 ° m L c c c NO U O U O U `o 0 °0 c 0 Q E a c d a a m o LL O o N m LL ? W -x LU W z O N U cn 00 W d' Ln U_ � O U O rN m 0 vn ti ry -° c o°1 d L O W CL ii _ cc 01 lD V1 O Ln o E � LL U1 U Y � O C � Y � y Y^ O 00 O. w w T r 40 r LL M- 0 a � d m LL a U T; 0 N C N m G ll_ N In CA O F d m M C 7 0 R U C O 'a 0 Q m m d E m Z w 0 m �O a w in 3+ (9 C Q N F- C O r CL 0 0 d C O m V m 0 U C w W U U al U O a 2 al C Ol m 0 C; O 2 .LA Q) cc co Ln V v O 0 N m O Ln O N (O II w al C al l7 r 0 0. w cn O N (!1 LL O u C O t2 O QI C O w C o o O Q O O O O O O O Q Q Q Q Q Q Q Q Q O O O O O O .Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z WC o U m rn rn rn� rn rn rn I rn m rn rn� rn rn rn rn rn rn O w C C C O C C C C C C C '[� 0 3 3 3 3 3 3 C C C C C C O rm+ N N N 0 m in in in �XXX)< h m N N Z O Z N Z N Z Z 0 Z N Z iU Z N .X m H m X m X h X C/5 H W W W Q W W W W W W W Q W W W W W W 00 - u O O O CD O O O O O O O O O O O O O O O m m I m m m m m m m m m m m m m O 0 O h N 00 O O (D m m � m M O 3 � r � c� o Q V N I O m Q 119 (+] n N N n m N (n cm t0 n n r- N" (ry a` ,;7 ;''oo co m N O � N m m m N l0 N l) n n O O m N CJ (O N LO M l0 N N N N (D n n� O d" O C Yj tS lq la w C U ,L C >�: l0 O y o 0 O (p N N aa- J,, O m m m 0 O m CA 0 LL m --( LL m --( LL`_ m F�. c 3 E O n O m O n O m O o� 3 m L6' io O n o O m O N o O m N N N QN _ :, r r CL N CL 0 0 rca Q m 4@ m m m m m Q Q m m 'S'. .�- Q x x x x CD O ` Q W W L) "•ps 'aid. („) W W W W O O O N O O O O 0 0 O O O -,q: ,LL' m m m m (m 0 0 0 o O cm) ,` O o CA m m m L) m m m` LL > ap LL m `m m `m m C7 C7 o e�; � m C7 (7 (7 (7 ",cc m m o O o O o O o O.. O.� O 'C 'O C O C:,!I.c O. O C O c O C O O LL O LL O LL O LL /( /( o LL 'O d0 U, ", :'O '0 _0 V M C C_ C_ C O O C_ `y 0 N L -. W: N -O a0 "D - QR iQ Q Q Q Q N N N N N N N = m m m m LL m 0. d' nii.. ,Q (`mp N N N' O O LL -� _d O iO i` O. O O O O O m (`m6 lD m N m. rn rn m. .� .� O1 >O o 0 0 0 0 0 0 o m m m m rn rn rn rn om 'C ,C 'C 'C (7 (7 V7 V7 to N N y+ .. . C1 C C - -!C: SO. W W W W _ in _ W W W W- "LU W ��- X X W W u, i I Q 0 . C Y f`') N N N w� >m (p >m > - m l0 lf)O Cl) (*] N CD - O N 0 O U C U U LL C U L O O w Z LL m J Q C `0 N `O mQ-. U� Q C O O L J= 'O O m 0 J 0 LL m (7 m m J Q N LL m LL J LL m c W 7 a a U C w W U U al U O a 2 al C Ol m 0 C; O 2 .LA Q) cc co Ln V v O 0 N m O Ln O N (O II w al C al l7 r 0 0. w cn O N (!1 LL O u C O t2 O QI Q 1. LL. Q CL a W (D r � LL a U N, 0 N O N f�0 g ti N IR O) ai F l0 C O 3 _V l0 U T y T lV c Q CN N c � v � C Q O lV ' C _a lV � C7 N d E M C z w l0 V � d V d U U C U) F w w U U ai 0 CL Ln LU w 2 w E v io O O N m al L E Z c .o tw a, O O d r Z Z Z Z yx c LLJ O Z Z Z U N Y U) N W a) N Q Z Z p C � Eo r-- ti N a1 Z r m u ` Q O q O O LL IL C O m 0 l0 In l0 Z ° d �E° o '! a0 a0 O 0 0 V W C y C 01 10 O 0 7 N } ur } ° y 0= 7 0 0 17 0 CD Q: d V as w m o D Cl) m V ch V N ° 0 ° of = ao ao ao � E o 0 0 0 G w Z o aV.. c+! M M m a o 0 0 N w C 0 0 CD C 1 0 0 d o,. O O X N � v t IIl 0 'T a7 .-- a0 O Y CD U) Q y C) .^c Lo Qv N a0 a0 O O .O — y w � O L L L ° CD Q Q Q O C- O U U U O m @' oo Oo r "o. Q Q O l0 C7 ol 41 a Om O Om O d' a) ° T 3 W 3 O) L m 00 U c*) C? c a LL O O O — O — N OI (D Q a a .D o d o @ 0 0 V C� N 0) O O — C d N c c t W W m V i N U U W Q Q Q U Q a LL r 41 O N .. w O IE0 z Q .2 Q f6 > W CY a Q O U C U) F w w U U ai 0 CL Ln LU w 2 w E v io O O N m al L E Z c .o tw a, c C O d r Z Z Z Z ,y p 3 Y N LX N LX N a1 Z N w w LLI w O O m O Z Z Z Z O V C y O O Z N } ur } m } mm d V N ° 0 m m� m m � E o 0 0 0 W a1 V w C 0 0 1 0 0 d o,. N 0 .^c O) m 0 O — ` — y w o O O .W W iE ° Li :' C O U c 0' U' O C- U O m @' oo Oo r "o. V C7 •: o O O O c a LL (D Q d @ as `0 O 1p C� m c LL — C Q -y 'fp W W U U U Q Q Q U Q U C U) F w w U U ai 0 CL Ln LU w 2 w E v io O O N m al L E Z c .o tw a, V- r LL w o CL df r to LL a U T O N O N (O L LL N C1') m d N C3 C 0 V v C O IS 0 l6 01 C m U E m z r v d �o CL` to .2!, m C Q d N N N C 0 CL N d C3 c 0 v is U U C ul H w U U N O a LU LU 2 a E v m D C O Z OD N tr (U A E 7 z C 0 Y m 'm v 00 d' Ln 0) O O N M O u, NN U N a+ 41 C 41 l7 t O CL v Ix d' G O U, 0 N N Iq O '-I U c 0 O CL N fr C f ° O O Q Q O O O Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q r y .Z Z Z z z Z Z Z z z z z z z z z z z z z z z z z W O V I N Cp Z .N N N N to N N N 4D N N N N N N N N (U N Q7 X _N X Z Z X X X Z Z z Z Z Z Z Z Z Z Z Z Z Z Z Z y W W W W W I 7 I- 7 7 7 7 7 7 7 j 75 Ia 75 7 f0 7 73 7 7 7 73 73 7 7 7 v C - - a) 42 N w N w N - a) 6I z a) N -M N -M N IT N .a 0 —M N 'T N -- N -- N g N 0 L C C C C C C C Cj � C C C C C C C C C C C C C c ° v v v v D U U �u'' U v v v U U D � o• U U U k W U Qt U N U N Q a/ u al o N U N U N (} 0 U N U N U N U N U N U N U N U N U N U N U U N N C N C N C y C N C N C N C N C y C N C N C N C N C N C W C N C N C N C N C 0 y C y C O h I, Cl) Cl) h Il- h O O O O O O O O O f- O O O O N m ° = y V i0 CD O CD O CO O CO O C. O (D O CD O d: O d: O Id' 10 d: O R 'y0 O d; O d: O d: O CD O 7 O O O d: O M O N O p IO r Cl) d0 d0 Cn Cn O O O O O O O O O O O_ O d: O O O M O ° d' Un � � °� � � (!7 0 Cf7 � �t� d; d; d:• d: d: d: d: M M w O O O O O O O O G O Ox ;O O O O O O O O O O i I b nj f Cp O O O O O O O O M M' 1 O O O O O O O O O ° y LO N M CD O O CD '6 Cr CD co O N C O N N N N h N O Q) CO d I� ° o," r ° ;T,, ao r + L � •� ;..•a a §� 9 . O t n O . .0) O O O C M N O YO 3,Y xl Y L co co ap O C Y 0 0- I :O CA O ) _m C4 ° °� °� m LL a n: M, m C9 LL ° w ,,u7 _ - O CO CO Q Q o U y ( 0 >Y Y Y' L L L L L - d m m L Om m m m _ O) _ N N N Q V ' J J J - N I N � N d O !Cn O O co — N N O CD CD N O M p p (,� O' CD (D N CD N O d' O Cn O Cl) O O d' O N O CD co r E O O O A A O O O 4 O CD CD CD O O O O O O CD O m ° A IM o M 7 7 (O m N p (D V N N N LO M p (D (O CO d- CO Z N O O O N M N M (D rn CD ry O Y LL m m L.L m J m m m �' Q' a' � Q' Q' J J Cn En En co 3 O D z 3 U C ul H w U U N O a LU LU 2 a E v m D C O Z OD N tr (U A E 7 z C 0 Y m 'm v 00 d' Ln 0) O O N M O u, NN U N a+ 41 C 41 l7 t O CL v Ix d' G O U, 0 N N Iq O '-I U c 0 O CL N fr o .- IL O oc IL a 01 � 10 IL a U r*, 0 N O 1 N , N li N 0 ui E C � d 0 C O I � 7 , V I � U . to cn 2% m C Q V- N C � O � -O ~ � C Q � m +, _a f6 � C9 N d y 0 E c Z r a+ 10 V 5 ! � V � O � IL U w W U U v 0 CL Ln w ui 1 E v � Y Q I C O N ; cr 1 O CD 0 O °O i O o O O O - U rn - EO N CD n O Q 7 N cu 7 z , C O c v c CL 0 0 0 0 m C O V O O m � E LL o a Z Z L CL K o W L a� CL o o w 0 o CL � 'n rn c 7 m Ln O J N w w a o 0 O o m tn Lo w o 0 a�i J CL :3 o a O o O (a N co Q L O m O C) C tO o 2 a CL O O 7 C m N m p p O L C O LL• � G _m ; J N W _D to m C N O O N W N Z a [fl O O O w 0 D w W U U v 0 CL Ln w ui 1 E v � Y Q I C O N ; cr 1 O CD 0 O °O i O o O O O - U rn - EO N CD n O Q 7 N cu 7 z , C O c v CL 0 0 0 m y O O c � LL a L CL o o F L CL o o 0 o CL � 0 0 0 m J °f 0 a o 0 G c LL a�i J CL :3 o a O o F L O C O C) tO o 2 a CL O O m LL L C G _m ; N W m C N O d J x W O a M O w D L al D z 3 0 (9 LL 0 O C (O O co O N CD Cl) J Z 2 W O w W U U v 0 CL Ln w ui 1 E v � Y Q I C O N ; cr 1 O CD 0 O °O i O o O O O - U rn - EO N CD n O Q 7 N cu 7 z , C O c V.- r O LLW- 0 CL rn m U a T O N O N fD LL N Ln CD O r l0 C O m V m U C ,O 'D 0 Q m c m ui E 10 Z V d �O a` Mn T m c Q N d F- 0 CL CD C O m 7 U �o U U C U) F LU w U U v O CL K LU 2 4) E Q) c 0 r`o 4) L E 7 Z c O on 4) z 00 Ln 01 rn 0 O N O Ln .i O N ra 4) c a! l7 0 O CL a) Of Ln O Ln N -4 O z LL c O O O. 4) I I Y Y U U U U as c o- - p1= D o aS c E� F— mtt„t U) c0 0 wN w ^m F� m•C mU) d A k m N •C m y m er = m c0 'C c0 X m c�0 N E T�� C x c0 N y X h N y R7 er O X y N y X p N t !0 Q) W 'C �0 N A J \�•C y O X m N O1 40 O��-C m N 0) Q C y O\ m h O \ m _ \\ 3 O X ca O \\ O. Or �. \ \•C Of a y 000 m X Of a N C y 00 m X O1 N = c ?` yaQ \ E.,N E \�Q 0 E y E y�Y w a y \ E.-N w U U y G y�Q U .O E G -- ,� O > y0� O co yb)L7 O O G U y O G p 0 y p Q> 0 y0i� Q) G .0 Q y S' L7 p 001 — ,� y�—L7 p 001 p y• O� L � �� o � �, c y °c � 0/ U o c CL S, U o pc .� °cop R: cc o p' �Q: y p L7 Q) L7 N p U N= .0 C O m L� m h m LL m 0 U N p U O •C Z "`?�- - - cmi� �? cl0 v E o E� 01 N r E3 0, c0 - c E N G 4] Y y t IL O .h Y C IL U —) h m G IL U .y c .'` N C I•L LL t c4 Y U LL L C LL: O c4 Y � —� U LL m ) Li U —) m y C LL .y li LL r \ m O> LL \ LL \ m a> LL \ (%� LL •� o � w a \ LL \ � \ O/ Q LL \ m p1 m w Q LL \ o \ m •C o1 Soo �'SNq1 'Soo BSc S�� h U 005 +�. �'S y 0, 00 yC 'Soo 'Soo a'S�� cp O O U�� c/) 47 S :UO cn 47 O O �U�Or c/) 47 •.�. ;UO 47 X um O O 47 LLLLU c0 :UO O O 4] 41 LLLLUU 47 O O U�� y c0 O O y 47 X C m 3 l0 to h N 1 N to 0) CD O N M N O (O O O c O O O O O O O _ O O O O I • I>p 3 (� Q) C 40 ('7 40 (� 4) C 41 ' C a 41 C O47 Cl) C Q) C 01 01 G CD C Q' Q' C ..C.�}. C C C V /N�� 4) y U U U '... U. ",. U U U 7 U U to CD l0 O N N N O a o C UU U @ Ud -C d Ux L x x x I X x x L 4Ud ° x U N N N C-4 N N V U N N CL x x N N FD CD ` ---(D N i 1 G 7 41 4) 41 2 N #` O m- .- E E E E m l6 LL c0 LL l6 LL LL f �LL LL -LL - LL LL LL LL O O O p O p O O C ���0 00 p O O I n A ~ w O o m • N _ ,�• N O _�1` � o w O m C 'y N (0 c3l O d O -Fu .O O U (A E m -o O Q Qf (D L C F m x W o LL L) x Q L CD U m L W v N Z o m E O C N m m 4) U 0 _O LL V Z w 3 3 m v m 3 c -m`p a1 Vm < f0 (0 Q LL r G C •� p L-) Q Q W x U o O U c U O p p O p m O) O O Q' O Z U O O r W C 40 c? cio c0 LL Q', O O (3) O U M L:) O Q a Q a U C U) F LU w U U v O CL K LU 2 4) E Q) c 0 r`o 4) L E 7 Z c O on 4) z 00 Ln 01 rn 0 O N O Ln .i O N ra 4) c a! l7 0 O CL a) Of Ln O Ln N -4 O z LL c O O O. 4) Cl r LL w m 0 CL M (D 0) LL a V r C) N O N m LL N C) E r m D C O 7 U m U c 0 Q m 0) c m ai E m Z V �O IL N y 2+ m c Q N a) H C CL d D c 0 7 U m L) O) U A m a) t y X01 N j a � � Q) a1 LL coj� mW 0 m v O 0 rn U O .c Ua c0 N 0 O LL a m E T LL 0 Q) d 0 On y y 0 3 o m LL L) 0 m 33d �o U O LL m a O LO O � � Q CD O) m Y m J a Q � CL " o a O Q, W Z O) c m O y e E m O LL � a CL C4 a) O cr c O O z W w C m C'! Z 0 Q U G LL 0 LU i m a) U) c ` W p G 0 = O Il! _A o IL ' z O e W W Z_ C] J_ m c C O y c o - w� z rn j W o Z ° U O V) � C O w T co O N X W 0 O Y o O y z CD CD LU W O W a c (D O Q m v N co N CD o a 0 o m LL U LL E c im a) G N L LL U •- 7 fA = v c _o 7 c d .2 d y Ln O 7 0 y Z M O c ao _y U) � U) m 0 Q rn c W m N v c 0 0 m } CD CL m C o m E m C4 O `m _0 O. T (n U) 0 m IL O c .Q o o o � U E m c N Z U E Q C 0 U) U `o °n E J O U 0 LL 41 N m .c m E � 0 0 U N p) C N y 2 W N 0 0) a) c a !0 _ Ol � c f`0 E m d Ur O m C Z a m m m CL 0)'N .c T N w E rn 0 N 2 C Y 0 N t O N J �U LL Z ma 2 ..l 0 a O LO O � � Q CD O) m Y m J a Q � CL " o a O Q, W Z O) c m O y e E m O LL � a CL C4 a) O cr c O O z W w C m C'! Z 0 Q U G LL 0 LU i m a) U) c ` W p G 0 = O Il! _A o IL ' z O e W W Z_ C] J_ m T W C D M 0 U- < O W CO U m c m C v a m m LL a) 0 m E 7 LL c U c c c O a) O. 10 O 0 Z y � w m W a) } h 0 Z Q W 2 Q 2 C y c CD K w Q Z rn W - Z ° c O AD 0 U co O ` __ a O z 0 O � U c O l0 N CD CD LU W O W o Q m v 0 m N l0 c O U) N LL E c im W LU G N L LL U •- N fA = v c _o 7 c d .2 d y E O W M O W ao _y U) � U) W 0 Q rn c O m N v c 0 0 m } CD CL m C H m C4 O E 0 N _0 O. T (n U) 0 m O c .Q o � C U) U E m c N f Z U E C 0 U) U m °n E J Z U 0 41 N E � } U y 2 N 0 0) c !0 _ Ol � c E m Z a = E O U m m CL 0)'N .c T w c E rn N 2 C Y N t O N �U Z 2 0 z CD 0 E > O W Z Q a Nm LL N T W C D M 0 U- < O W CO U m c m C v a m m LL a) 0 m E 7 LL c U c c c O a) O. 10 O 0 Z y � w m W a) } h 0 Z Q W 2 Q 2 U c U) a w U U a) a O 0_ Ln m LU 2 a) E c m D c bD a) m cu E 7 z 0 m Y m a) K a0 Ln�t a O1 0 0 N M O Ln O N m a a) m c a) l7 a a) m V Q) k0 LA 0 N Ln O U c O 0 a a) m a, c CL E 0 U m c a K M O N v c n c a) uj uj T ago a) c LU c a m U c 0 m v CD w m Q Z w W x O a) y a) y C co O ` __ a O z E � U CD CD O W c U Z l0 c N a O W LU N v c d .2 W M O W ao W rn c O v c 0 CD CL H m C4 O E 0 N _0 O. T (n � O .Q U) N f W C U) m °n E J Z U 0 V o0 U U 2 U c U) a w U U a) a O 0_ Ln m LU 2 a) E c m D c bD a) m cu E 7 z 0 m Y m a) K a0 Ln�t a O1 0 0 N M O Ln O N m a a) m c a) l7 a a) m V Q) k0 LA 0 N Ln O U c O 0 a a) m a, c CL E 0 U m c a K M O N v c n c a) uj uj T ago a) c LU c a m U r r � r LL a, O a � r � d LL LL m Lp L) a E x vi r Ch M U L N c O Z d N c 0 C) — N N N LL m CO L c 0 � 70 o Q m E C m a E Q N C Z Q .2 d O 10 LL 2 3 V C w U Z Q J IL 2 O U Q Mn W 2' � C Q w ct U N Q _o a m Q o O m = U S .a LL (6 O O �+ 4) Q Q N C U Z O V V a` ti V C (n 00 w V U u1 m U O O N r, 0 Ln 0 N is v a G1 N > N O U L t M n w Z cc V l�D U/ O N Ln Qj O E � LL ate+ U � C o O O CL .o O O O oO O O O U rn m co LO ri- O Q N OJ E 7 z c O v C C O I O - N D EU O W V S N r UJ x C w � t p ) w c Lo o! I c z w 'x O 2 o w z � 0 d o N N I r c �I I 13 m Z v m N .3. + o (e i rn c o W ° W I u 3 I o I Q ° m z rz a I m u � c I ' 0 G U o � A 7 U , d J I � I � C 0.2 O O T� U _ C 3 J N d C o � L , A , 7' (D N � ' i v C r I I � N N cm 17. � M O N J C l0 7 � LL O U) I� ` c C N a N ° FT O w ~ I� U } O N O m C O N E N N� Z O U) Q E Q x l0 O (p Z V C (n 00 w V U u1 m U O O N r, 0 Ln 0 N is v a G1 N > N O U L t M n w Z cc V l�D U/ O N Ln Qj O E � LL ate+ U � C o O O CL .o O O O oO O O O U rn m co LO ri- O Q N OJ E 7 z c O v I C' O w c Lo o! z w 2 I I 0 N N I r c d v d o W ° ` I O aLL , I 3 d L , i v r I 17. � LL O Q ` Z LL c _ E > l0 O (p Z CQi cy E � Q l0 LL C .fl Q I V C (n 00 w V U u1 m U O O N r, 0 Ln 0 N is v a G1 N > N O U L t M n w Z cc V l�D U/ O N Ln Qj O E � LL ate+ U � C o O O CL .o O O O oO O O O U rn m co LO ri- O Q N OJ E 7 z c O v O r LL w C a r LL U a N U) f0 Q N C O O < c Q O m �. m a_ f0 �' � N m al Q M C Z r V � al 5 IL U U C_ U) 00 H V W Ln U O a U ON � m U 9 CU -i a, o N N w � L m to Q/ CX O co ID n t ` V1 O y ac n W 2 m 0 CL z O Cc ccy 9 v cxc 3 O C e C C cn �9 E 1O 7 LI a ° N Ln v H O E m U- m C 0 C ` C 0 al a7 Y C L U = O N N K K U v y � � U ` C O D. C O U i7 6 C o. C. v H O O Ql L O O _j O 0 00 NO y O w O y LOO C Y O Ln O Ti a d c W N U U .. ip Q, w E C Z w O1 O m CO to io a m bo 0 s u O O C U � a7 E U O �O U OD v9 8 c c L J w O- O co U CL � C U C m d ry vYV D f6 n CI- E d L_ O U O y O U m F- U CL tE O CL D. C w .N.. O U (D C ' c W O U o L .a N U c 7 E EL O a).• " y, C C O] w .LO.. (D C :E O. C, cc "(D L_ 01. U) . O 0 (0 U N �. O m D U CV a0 c c_`w, M 5 w N 9- a> 3, C Lm CO a_ 0 to U LO a o @1ia � p N a Ln E a O . T U w y O y a O a)- rn w �F' .a)' N ` U O `N CL U `° 0 :E U y c m o , ID 0 �°.. (n C .O O 6 c _ :, H Z N - p ) .0 y w 0 O � 3a N N W a7 W @ C U 0) C C w a7 C O CC u~i E F- dmE N Z O U O -0 ~N 7 a EN ID .•C U O 7 0 C 0 a c N @ W CL p c co _- O o c O cc = N D U :t!0 �n M O w c .N > (0 c 0 U) °- oar cm w Z U CC N p c r y Z (V 0 C) >> w v O Z V =i% w 01 m a7 C C N a = 01 U) . . LO AD IL LU L 0 cn E Q a� —.0 0 c Q Zm w m O U Li m �Ea�0) _m U � °U W c N> 7 m C Z m U H 3 a 2> 0) C E Lo m m V" O E 0 3 wOe m E 2 co T p LJ 0 J Q W Q V N Q Q Li U C_ U) 00 H V W Ln U O a U ON � m U 9 CU -i a, o N N w � L m to Q/ CX O co ID n t ` V1 O y ac n W 2 m 0 CL z O Cc ccy 9 v cxc 3 O C e C C cn �9 E 1O 7 LI a ° N Ln v H O E m U- m C 0 C ` C 0 al a7 Y C L U = O N N K K U v y � � U ` C O D. C O U i7 6 C o. C. v H O O Ql L O O _j O 0 00 NO y O w O y LOO C Y O Ln O Ti a d c W N U U .. ip Q, w E C Z w O1 O m CO to io a m bo 0 s u HVAC SYSTEM HEATING AND COOLING LOADS SUMMARY Project Name Date Ganga Addition System Name Res HVAC ENGINEERING CHECKS SYSTEM LOAD Number of Systems 1 Total Total Output (B Total Output (T Total Output (B Total Output s Air System CFM per S stet Airflow (cfm) Airflow (cfm /s Airflow cfm/Tc Outside Air ( %) Outside Air (cfi Note: values above HEATING SYSTEI 28 OF 67 OF Outside Air 0 cfm 67 OF 188 / 68 OF Outside Air 0 cfm 76/62 °F 37,1281 8,2781 1 75,0001 37,1281 8,2781 1 75,000 Aug 3 PM Jan 1 AM 68 OF 105 OF 0 Supply Fan Heating Coil 104 OF 1,600 cfm ROOM 68 OF PSYCHROMETICS (Airstream Temperatures at Time of Coolina Peak) 76 / 62 OF 77 / 62 OF 55 / 54 OF Q Supply Fan Cooling Coil 56 / 54 OF 1,600 cfm 46.0% � ROOM iL 71 75 /61 OF Al--9b. 1 —�T 1 1 A I EnergyPro 6.4 by EnergySoft User Number: 6226 RunCode: 2015- 03- 20T09 :56 :08 ID: Ganga Addition Page 13 of 13 75,000 Total Room Loads Return Vented Lighting Return Air Ducts Return Fan Ventilation Supply Fan Supply Air Ducts TOTAL SYSTEM LOAD Floor Area 2,364 75,000 COIL COOLING PEAK 31.7 CFM Sensible 47,500 CFM 47,500 1,446 4.0 ft) 20.1 n 597.2 0 1,358 1,600 HVAC EQUIPMENT SELECTION 0 1,600 Existing HVAC System 0 0.68 0 404.2 -2,233 2,120 0.0 % Total Adjusted System Output (Adjusted for Peak Design conditions) TIME OF SYSTEM PEAK 0.00 at ARI conditions FCHROMETRICS (Airstream Temperatures at Time 37,1281 8,2781 1 75,0001 37,1281 8,2781 1 75,000 Aug 3 PM Jan 1 AM 68 OF 105 OF 0 Supply Fan Heating Coil 104 OF 1,600 cfm ROOM 68 OF PSYCHROMETICS (Airstream Temperatures at Time of Coolina Peak) 76 / 62 OF 77 / 62 OF 55 / 54 OF Q Supply Fan Cooling Coil 56 / 54 OF 1,600 cfm 46.0% � ROOM iL 71 75 /61 OF Al--9b. 1 —�T 1 1 A I EnergyPro 6.4 by EnergySoft User Number: 6226 RunCode: 2015- 03- 20T09 :56 :08 ID: Ganga Addition Page 13 of 13 3/20/2015 Floor Area 2,364 COIL COOLING PEAK COIL HTG. PEAK CFM Sensible Latent CFM Sensible 1,446 29,934 1,350 991 38,177 0 1,358 2,120 0 0 0 0 0 0 0 2,233 1,358 34,B821 1,350 -2,233 2,120 4D,184 37,1281 8,2781 1 75,0001 37,1281 8,2781 1 75,000 Aug 3 PM Jan 1 AM 68 OF 105 OF 0 Supply Fan Heating Coil 104 OF 1,600 cfm ROOM 68 OF PSYCHROMETICS (Airstream Temperatures at Time of Coolina Peak) 76 / 62 OF 77 / 62 OF 55 / 54 OF Q Supply Fan Cooling Coil 56 / 54 OF 1,600 cfm 46.0% � ROOM iL 71 75 /61 OF Al--9b. 1 —�T 1 1 A I EnergyPro 6.4 by EnergySoft User Number: 6226 RunCode: 2015- 03- 20T09 :56 :08 ID: Ganga Addition Page 13 of 13 I .,r_ r.F 1 CUPERTINO STRUCTURAL CALC,U.LATI ON'Sg ° ®IlramnI Project Name: Project Address: Project Description HL- VIENVED i-OR CUDE COMPLIANCE Revieweci By ':�" , � GANGA RESIDENCE 10395 FARALLONE DRIVE CUPERTINO, CA TWO STORY SINGLE- FAMILY ADDITION AND REMODEL QROrESS,o� U 0� m / No. 71615 A Exp.12 -31 -15 s� CIVIL �Q RTFOF CAL1F0 a�1 � LILE,J D DESIGN BY: JOEY ROCA III PMi� 2 " ENGINEERING ROCA3 ENGINEERING STRUCTURAL DESIGN RESIDENTIAL/ COMMERCIAL 1250 1250 Ames Avenue, Suite 109 MILPITAS, CA 95035 Ph: 408.821.1335 e-mail: Roca3 @ymail.com PROJECT NO: 316.070314 DATE ISSUED: 8/5/2014 REV.NO. pO FORM G -01 0 712812014 JR BLDG. SUBMITTAL NO. DATE BY DESCRIPTION ROCA3 ENGINEERING STRUCTURAL DESIGN Project: Gan a Residence FORM G -03 Address: 10395 Farallone Drive By Date Page No. j� RESIDENTIAL/ COMMERCIAL Cupertino, CA JR 07/28/14 Remarks : Checked Revision Job No. ENGINEERING TABLE OF CONTENTS JR 1316.070314 D USGS Seismic Data TABLE OF CONTENTS Part Content Page i General Project Specification 1 -2 Design Criteria Material Specification Dead Load, Live Loads, Snow Loads ii Lateral Design 3 -9 Seismic/ Wind, Shearwall iii Beam Design 10 - 17 Roof framing iv Beam Design 18 - 19 Floor framing v Post Capacity 20 -20 Axial vi Footing Capacity 21 -21 Continuous/ Isolated footing vii Appendix 22 -28 Simpson SB anchor capacity Epoxy holdown design per ACI appendix D USGS Seismic Data Project Ganga Residence FORM L -01 , STRUCTURAL DESIGN Address 10395 Farallone Drive Made by Page No. RESIDENTIAL/ COMMERCIAL Cupertino, CA JR 7/28/14 Page No. ENGINEERING Remarks Checked Revision Project No. GENERAL SPECIFICATION/ LATERAL DESIGN JR RO 316.070314 1. Design Criteria 2013 California Building Code based on 2012 IBC 1.1 Seismic Parameters Site Class D� Occupancy Category Seismic Design Category (SDC) D �I Response Modification Coefficient (R) R Importance Factor (1) I :54 ierfn4- Site Coordinates X37 3f742 i N I 122 0272 W Short Period Response (Ss) SS= t37 One Second Period Response (Sl) 2. Foundation Design Parameters 2.1 0 Minimum Building Code Requirements 2.2 ❑ Geotechnical,Engineer: Project Reference No.:��' �a - Date: R Telephone No. r� ,� Allowable Soil Bearing Capacity - psf Allowable Pier Skin Friction*x �psf 3. MATERIAL SPECIFICATIONS 1.2 Wind Parameters Exposure Type NYC g Basic Wind Speed ti+ 1d1k eA mph 3.1 Concrete fc = 25d psi (28 day compressive strength) 3.2 Concrete Block fm= 1500 psi (Type N or S) 3.3 Reinforcing Steel Grade 40: #4 and smaller Grade 60: #5 and larger 3.4 Lumber 2" to 4" thick DF No.2 Fb= 875 psi 2" to 4" wide Roof/ Ceiling Joist DF No.2 Fb= 875 psi Beam/ Post 4x DF No.2 Fb= 875 psi Fc= 1000 psi 6x DF No.1 Fb= 1350 psi Fc= 1300 psi Mudsill DF Pressure Treated Glu -Lam Beam DF/ DF Simple Span 24F -V4 DF/ DF Cantilever 24F -V8 Parallam (PSL) 2.0 E Truss Joist MacMillan Micro -Lam (ML) 1.8 E Truss Joist MacMillan Floor I -Joist (TJI) Manufactured by Trus Joist Corporation 3.5 Plywood Diaphragm Roof 1/2" CDX APA(32116 ) Floor 3/4" T &G CDX APA(48/24) 3.6 Structural Steel ASTM A -36 or per latest AISC provision 3.7 Manufactured Shear Panels Simpson Strongwall Manufactured by Simpson Strong -Tie Hardy Frame Panels Manufactured by Mitek Company Page 1 of 5 ROCA3 ENGINEERING P 1. Design Criteria 2013 California Building Code based on 2012 IBC 1.1 Seismic Parameters Site Class D� Occupancy Category Seismic Design Category (SDC) D �I Response Modification Coefficient (R) R Importance Factor (1) I :54 ierfn4- Site Coordinates X37 3f742 i N I 122 0272 W Short Period Response (Ss) SS= t37 One Second Period Response (Sl) 2. Foundation Design Parameters 2.1 0 Minimum Building Code Requirements 2.2 ❑ Geotechnical,Engineer: Project Reference No.:��' �a - Date: R Telephone No. r� ,� Allowable Soil Bearing Capacity - psf Allowable Pier Skin Friction*x �psf 3. MATERIAL SPECIFICATIONS 1.2 Wind Parameters Exposure Type NYC g Basic Wind Speed ti+ 1d1k eA mph 3.1 Concrete fc = 25d psi (28 day compressive strength) 3.2 Concrete Block fm= 1500 psi (Type N or S) 3.3 Reinforcing Steel Grade 40: #4 and smaller Grade 60: #5 and larger 3.4 Lumber 2" to 4" thick DF No.2 Fb= 875 psi 2" to 4" wide Roof/ Ceiling Joist DF No.2 Fb= 875 psi Beam/ Post 4x DF No.2 Fb= 875 psi Fc= 1000 psi 6x DF No.1 Fb= 1350 psi Fc= 1300 psi Mudsill DF Pressure Treated Glu -Lam Beam DF/ DF Simple Span 24F -V4 DF/ DF Cantilever 24F -V8 Parallam (PSL) 2.0 E Truss Joist MacMillan Micro -Lam (ML) 1.8 E Truss Joist MacMillan Floor I -Joist (TJI) Manufactured by Trus Joist Corporation 3.5 Plywood Diaphragm Roof 1/2" CDX APA(32116 ) Floor 3/4" T &G CDX APA(48/24) 3.6 Structural Steel ASTM A -36 or per latest AISC provision 3.7 Manufactured Shear Panels Simpson Strongwall Manufactured by Simpson Strong -Tie Hardy Frame Panels Manufactured by Mitek Company Page 1 of 5 2. Foundation Design Parameters 2.1 0 Minimum Building Code Requirements 2.2 ❑ Geotechnical,Engineer: Project Reference No.:��' �a - Date: R Telephone No. r� ,� Allowable Soil Bearing Capacity - psf Allowable Pier Skin Friction*x �psf 3. MATERIAL SPECIFICATIONS 1.2 Wind Parameters Exposure Type NYC g Basic Wind Speed ti+ 1d1k eA mph 3.1 Concrete fc = 25d psi (28 day compressive strength) 3.2 Concrete Block fm= 1500 psi (Type N or S) 3.3 Reinforcing Steel Grade 40: #4 and smaller Grade 60: #5 and larger 3.4 Lumber 2" to 4" thick DF No.2 Fb= 875 psi 2" to 4" wide Roof/ Ceiling Joist DF No.2 Fb= 875 psi Beam/ Post 4x DF No.2 Fb= 875 psi Fc= 1000 psi 6x DF No.1 Fb= 1350 psi Fc= 1300 psi Mudsill DF Pressure Treated Glu -Lam Beam DF/ DF Simple Span 24F -V4 DF/ DF Cantilever 24F -V8 Parallam (PSL) 2.0 E Truss Joist MacMillan Micro -Lam (ML) 1.8 E Truss Joist MacMillan Floor I -Joist (TJI) Manufactured by Trus Joist Corporation 3.5 Plywood Diaphragm Roof 1/2" CDX APA(32116 ) Floor 3/4" T &G CDX APA(48/24) 3.6 Structural Steel ASTM A -36 or per latest AISC provision 3.7 Manufactured Shear Panels Simpson Strongwall Manufactured by Simpson Strong -Tie Hardy Frame Panels Manufactured by Mitek Company Page 1 of 5 Page 1 of 5 Project Ganga Residence FORM L -01 STRUCTURAL DESIGN Address 10395 Farallone Drive Made by Page No. Vow RESIDENTIAL/ COMMERCIAL Cupertino, CA JR 7128114 Page No. ENGINEERING Remarks Checked Revision Project No. GENERAL SPECIFICATION/ LATERAL DESIGN JR RO 316.070314 4. GRAVITY LOADS 4.1 Live Load / Snow Load LLr= 20 ipsf (Roof Live Load) LL =s X40kjpsf (Floor Live Load) S =- ;psf (Snow Load) 4.2 Dead Load 4.21 Roof _ Composition Shingles _5.0 psf 1112" Plywood Sheathing 1.7 ipsf Fr g 2 f3 , psf Insulation 1'?= jpsf !Ceiling _ 2b0,psf ,M csi ellaneous i 2 =fI psf Total = 13.7 x 1.06 4.22 Floors rRn-ish Floor _�_ -, 4 5 psf 3/ Plywood Sheathing Ipsf Framing - ypsf i- -- -- - - - -- ' Insulation psf ;Ceiling 1`l_� psf Miscellaneous psf Total = 15.0 psf 4.23 Exterior Walls [Stucco AZ E3 psf !Plywood 1,_ ;1psf ;Studs "'01-i psf _ Gypboard _- �Lf?� 'ipsf Miscellaneous1,.E1 E =a psf j Total = 17.0 psf 5. LATERAL LOADS 5.1 Wind Forces Exposure Type = C Basic Wind Speed = 110'mph Occupancy Category = II -J 14.5 4.24 Deck Roof Slope an= _ : 12 'Slope Factor 1 1.06 psf w Zr5 psf �' .. psf C750,12,-, - , psf .: ,. psf sf 20.0 psf 4.25 Interior Walls Kd = Kz.r = G= D' psf 2 psf 8.0 psf - -- - - - - -- -- Z 15' -0" 2-0--0--J 25' -0" 30'.0--1 40% Zan = 15' - 20i 25 30 40 60 01 - -- j g __i_- 9001 9001 900 9001 900 900 a 9.501 9.50; - 9.50' 9.50 9.50 9.50 �- Kz - -- - - 0.85 - - 0.90 0.951 0.98 1.04 1.14 q z 22.35 23.75 ! 24.89 25.861 27.48 29.93 P (psf) 19.221 20.421 21.401 22.241 23.631 25.74 5.2 Seismic Forces 5.21 Site Coefficients . Site Coefficient (Fa) Ss < 0.25 0.50 0.75 1.00 >1.25 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 W C 1.2 1.2 1.1 1.0 1.0 t= D 1.6 1.4 1.2 1.1 1.0 H E 2.5 1.7 1.2 0.9 0.9 Table 1613.5.3 (1) Site Coefficient (Fv) S1 < 0.1 0.2 0.3 0.4 >0.5 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 u W C 1.7 1.6 1.5 1.4 1.3 t: D 2.4 2.0 1.8 1.6 1.5 H E 3.5 3.2 2.8 2.4 2.4 Table 1613.5.3 (2) Page 2 of 5 Cp = Oj8 l GCpi = m$< Kz =2.01 (Z/Zg) R� a) qz= 0.00256 K z KzT K d V 2 P=qz (GCp + GCpi) Tabulated Result Site Class = D Ss= 1.87 S,= 0.70 By Interpolation: Fa = 1.00 Fv = 1.50 ROCA3 ENGINEERING P 4. GRAVITY LOADS 4.1 Live Load / Snow Load LLr= 20 ipsf (Roof Live Load) LL =s X40kjpsf (Floor Live Load) S =- ;psf (Snow Load) 4.2 Dead Load 4.21 Roof _ Composition Shingles _5.0 psf 1112" Plywood Sheathing 1.7 ipsf Fr g 2 f3 , psf Insulation 1'?= jpsf !Ceiling _ 2b0,psf ,M csi ellaneous i 2 =fI psf Total = 13.7 x 1.06 4.22 Floors rRn-ish Floor _�_ -, 4 5 psf 3/ Plywood Sheathing Ipsf Framing - ypsf i- -- -- - - - -- ' Insulation psf ;Ceiling 1`l_� psf Miscellaneous psf Total = 15.0 psf 4.23 Exterior Walls [Stucco AZ E3 psf !Plywood 1,_ ;1psf ;Studs "'01-i psf _ Gypboard _- �Lf?� 'ipsf Miscellaneous1,.E1 E =a psf j Total = 17.0 psf 5. LATERAL LOADS 5.1 Wind Forces Exposure Type = C Basic Wind Speed = 110'mph Occupancy Category = II -J 14.5 4.24 Deck Roof Slope an= _ : 12 'Slope Factor 1 1.06 psf w Zr5 psf �' .. psf C750,12,-, - , psf .: ,. psf sf 20.0 psf 4.25 Interior Walls Kd = Kz.r = G= D' psf 2 psf 8.0 psf - -- - - - - -- -- Z 15' -0" 2-0--0--J 25' -0" 30'.0--1 40% Zan = 15' - 20i 25 30 40 60 01 - -- j g __i_- 9001 9001 900 9001 900 900 a 9.501 9.50; - 9.50' 9.50 9.50 9.50 �- Kz - -- - - 0.85 - - 0.90 0.951 0.98 1.04 1.14 q z 22.35 23.75 ! 24.89 25.861 27.48 29.93 P (psf) 19.221 20.421 21.401 22.241 23.631 25.74 5.2 Seismic Forces 5.21 Site Coefficients . Site Coefficient (Fa) Ss < 0.25 0.50 0.75 1.00 >1.25 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 W C 1.2 1.2 1.1 1.0 1.0 t= D 1.6 1.4 1.2 1.1 1.0 H E 2.5 1.7 1.2 0.9 0.9 Table 1613.5.3 (1) Site Coefficient (Fv) S1 < 0.1 0.2 0.3 0.4 >0.5 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 u W C 1.7 1.6 1.5 1.4 1.3 t: D 2.4 2.0 1.8 1.6 1.5 H E 3.5 3.2 2.8 2.4 2.4 Table 1613.5.3 (2) Page 2 of 5 Cp = Oj8 l GCpi = m$< Kz =2.01 (Z/Zg) R� a) qz= 0.00256 K z KzT K d V 2 P=qz (GCp + GCpi) Tabulated Result Site Class = D Ss= 1.87 S,= 0.70 By Interpolation: Fa = 1.00 Fv = 1.50 4.22 Floors rRn-ish Floor _�_ -, 4 5 psf 3/ Plywood Sheathing Ipsf Framing - ypsf i- -- -- - - - -- ' Insulation psf ;Ceiling 1`l_� psf Miscellaneous psf Total = 15.0 psf 4.23 Exterior Walls [Stucco AZ E3 psf !Plywood 1,_ ;1psf ;Studs "'01-i psf _ Gypboard _- �Lf?� 'ipsf Miscellaneous1,.E1 E =a psf j Total = 17.0 psf 5. LATERAL LOADS 5.1 Wind Forces Exposure Type = C Basic Wind Speed = 110'mph Occupancy Category = II -J 14.5 4.24 Deck Roof Slope an= _ : 12 'Slope Factor 1 1.06 psf w Zr5 psf �' .. psf C750,12,-, - , psf .: ,. psf sf 20.0 psf 4.25 Interior Walls Kd = Kz.r = G= D' psf 2 psf 8.0 psf - -- - - - - -- -- Z 15' -0" 2-0--0--J 25' -0" 30'.0--1 40% Zan = 15' - 20i 25 30 40 60 01 - -- j g __i_- 9001 9001 900 9001 900 900 a 9.501 9.50; - 9.50' 9.50 9.50 9.50 �- Kz - -- - - 0.85 - - 0.90 0.951 0.98 1.04 1.14 q z 22.35 23.75 ! 24.89 25.861 27.48 29.93 P (psf) 19.221 20.421 21.401 22.241 23.631 25.74 5.2 Seismic Forces 5.21 Site Coefficients . Site Coefficient (Fa) Ss < 0.25 0.50 0.75 1.00 >1.25 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 W C 1.2 1.2 1.1 1.0 1.0 t= D 1.6 1.4 1.2 1.1 1.0 H E 2.5 1.7 1.2 0.9 0.9 Table 1613.5.3 (1) Site Coefficient (Fv) S1 < 0.1 0.2 0.3 0.4 >0.5 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 u W C 1.7 1.6 1.5 1.4 1.3 t: D 2.4 2.0 1.8 1.6 1.5 H E 3.5 3.2 2.8 2.4 2.4 Table 1613.5.3 (2) Page 2 of 5 Cp = Oj8 l GCpi = m$< Kz =2.01 (Z/Zg) R� a) qz= 0.00256 K z KzT K d V 2 P=qz (GCp + GCpi) Tabulated Result Site Class = D Ss= 1.87 S,= 0.70 By Interpolation: Fa = 1.00 Fv = 1.50 4.23 Exterior Walls [Stucco AZ E3 psf !Plywood 1,_ ;1psf ;Studs "'01-i psf _ Gypboard _- �Lf?� 'ipsf Miscellaneous1,.E1 E =a psf j Total = 17.0 psf 5. LATERAL LOADS 5.1 Wind Forces Exposure Type = C Basic Wind Speed = 110'mph Occupancy Category = II -J 14.5 4.24 Deck Roof Slope an= _ : 12 'Slope Factor 1 1.06 psf w Zr5 psf �' .. psf C750,12,-, - , psf .: ,. psf sf 20.0 psf 4.25 Interior Walls Kd = Kz.r = G= D' psf 2 psf 8.0 psf - -- - - - - -- -- Z 15' -0" 2-0--0--J 25' -0" 30'.0--1 40% Zan = 15' - 20i 25 30 40 60 01 - -- j g __i_- 9001 9001 900 9001 900 900 a 9.501 9.50; - 9.50' 9.50 9.50 9.50 �- Kz - -- - - 0.85 - - 0.90 0.951 0.98 1.04 1.14 q z 22.35 23.75 ! 24.89 25.861 27.48 29.93 P (psf) 19.221 20.421 21.401 22.241 23.631 25.74 5.2 Seismic Forces 5.21 Site Coefficients . Site Coefficient (Fa) Ss < 0.25 0.50 0.75 1.00 >1.25 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 W C 1.2 1.2 1.1 1.0 1.0 t= D 1.6 1.4 1.2 1.1 1.0 H E 2.5 1.7 1.2 0.9 0.9 Table 1613.5.3 (1) Site Coefficient (Fv) S1 < 0.1 0.2 0.3 0.4 >0.5 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 u W C 1.7 1.6 1.5 1.4 1.3 t: D 2.4 2.0 1.8 1.6 1.5 H E 3.5 3.2 2.8 2.4 2.4 Table 1613.5.3 (2) Page 2 of 5 Cp = Oj8 l GCpi = m$< Kz =2.01 (Z/Zg) R� a) qz= 0.00256 K z KzT K d V 2 P=qz (GCp + GCpi) Tabulated Result Site Class = D Ss= 1.87 S,= 0.70 By Interpolation: Fa = 1.00 Fv = 1.50 Total = 17.0 psf 5. LATERAL LOADS 5.1 Wind Forces Exposure Type = C Basic Wind Speed = 110'mph Occupancy Category = II -J 14.5 4.24 Deck Roof Slope an= _ : 12 'Slope Factor 1 1.06 psf w Zr5 psf �' .. psf C750,12,-, - , psf .: ,. psf sf 20.0 psf 4.25 Interior Walls Kd = Kz.r = G= D' psf 2 psf 8.0 psf - -- - - - - -- -- Z 15' -0" 2-0--0--J 25' -0" 30'.0--1 40% Zan = 15' - 20i 25 30 40 60 01 - -- j g __i_- 9001 9001 900 9001 900 900 a 9.501 9.50; - 9.50' 9.50 9.50 9.50 �- Kz - -- - - 0.85 - - 0.90 0.951 0.98 1.04 1.14 q z 22.35 23.75 ! 24.89 25.861 27.48 29.93 P (psf) 19.221 20.421 21.401 22.241 23.631 25.74 5.2 Seismic Forces 5.21 Site Coefficients . Site Coefficient (Fa) Ss < 0.25 0.50 0.75 1.00 >1.25 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 W C 1.2 1.2 1.1 1.0 1.0 t= D 1.6 1.4 1.2 1.1 1.0 H E 2.5 1.7 1.2 0.9 0.9 Table 1613.5.3 (1) Site Coefficient (Fv) S1 < 0.1 0.2 0.3 0.4 >0.5 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 u W C 1.7 1.6 1.5 1.4 1.3 t: D 2.4 2.0 1.8 1.6 1.5 H E 3.5 3.2 2.8 2.4 2.4 Table 1613.5.3 (2) Page 2 of 5 Cp = Oj8 l GCpi = m$< Kz =2.01 (Z/Zg) R� a) qz= 0.00256 K z KzT K d V 2 P=qz (GCp + GCpi) Tabulated Result Site Class = D Ss= 1.87 S,= 0.70 By Interpolation: Fa = 1.00 Fv = 1.50 4.25 Interior Walls Kd = Kz.r = G= D' psf 2 psf 8.0 psf - -- - - - - -- -- Z 15' -0" 2-0--0--J 25' -0" 30'.0--1 40% Zan = 15' - 20i 25 30 40 60 01 - -- j g __i_- 9001 9001 900 9001 900 900 a 9.501 9.50; - 9.50' 9.50 9.50 9.50 �- Kz - -- - - 0.85 - - 0.90 0.951 0.98 1.04 1.14 q z 22.35 23.75 ! 24.89 25.861 27.48 29.93 P (psf) 19.221 20.421 21.401 22.241 23.631 25.74 5.2 Seismic Forces 5.21 Site Coefficients . Site Coefficient (Fa) Ss < 0.25 0.50 0.75 1.00 >1.25 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 W C 1.2 1.2 1.1 1.0 1.0 t= D 1.6 1.4 1.2 1.1 1.0 H E 2.5 1.7 1.2 0.9 0.9 Table 1613.5.3 (1) Site Coefficient (Fv) S1 < 0.1 0.2 0.3 0.4 >0.5 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 u W C 1.7 1.6 1.5 1.4 1.3 t: D 2.4 2.0 1.8 1.6 1.5 H E 3.5 3.2 2.8 2.4 2.4 Table 1613.5.3 (2) Page 2 of 5 Cp = Oj8 l GCpi = m$< Kz =2.01 (Z/Zg) R� a) qz= 0.00256 K z KzT K d V 2 P=qz (GCp + GCpi) Tabulated Result Site Class = D Ss= 1.87 S,= 0.70 By Interpolation: Fa = 1.00 Fv = 1.50 - -- - - - - -- -- Z 15' -0" 2-0--0--J 25' -0" 30'.0--1 40% Zan = 15' - 20i 25 30 40 60 01 - -- j g __i_- 9001 9001 900 9001 900 900 a 9.501 9.50; - 9.50' 9.50 9.50 9.50 �- Kz - -- - - 0.85 - - 0.90 0.951 0.98 1.04 1.14 q z 22.35 23.75 ! 24.89 25.861 27.48 29.93 P (psf) 19.221 20.421 21.401 22.241 23.631 25.74 5.2 Seismic Forces 5.21 Site Coefficients . Site Coefficient (Fa) Ss < 0.25 0.50 0.75 1.00 >1.25 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 W C 1.2 1.2 1.1 1.0 1.0 t= D 1.6 1.4 1.2 1.1 1.0 H E 2.5 1.7 1.2 0.9 0.9 Table 1613.5.3 (1) Site Coefficient (Fv) S1 < 0.1 0.2 0.3 0.4 >0.5 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 u W C 1.7 1.6 1.5 1.4 1.3 t: D 2.4 2.0 1.8 1.6 1.5 H E 3.5 3.2 2.8 2.4 2.4 Table 1613.5.3 (2) Page 2 of 5 Cp = Oj8 l GCpi = m$< Kz =2.01 (Z/Zg) R� a) qz= 0.00256 K z KzT K d V 2 P=qz (GCp + GCpi) Tabulated Result Site Class = D Ss= 1.87 S,= 0.70 By Interpolation: Fa = 1.00 Fv = 1.50 5.2 Seismic Forces 5.21 Site Coefficients . Site Coefficient (Fa) Ss < 0.25 0.50 0.75 1.00 >1.25 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 W C 1.2 1.2 1.1 1.0 1.0 t= D 1.6 1.4 1.2 1.1 1.0 H E 2.5 1.7 1.2 0.9 0.9 Table 1613.5.3 (1) Site Coefficient (Fv) S1 < 0.1 0.2 0.3 0.4 >0.5 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 u W C 1.7 1.6 1.5 1.4 1.3 t: D 2.4 2.0 1.8 1.6 1.5 H E 3.5 3.2 2.8 2.4 2.4 Table 1613.5.3 (2) Page 2 of 5 Cp = Oj8 l GCpi = m$< Kz =2.01 (Z/Zg) R� a) qz= 0.00256 K z KzT K d V 2 P=qz (GCp + GCpi) Tabulated Result Site Class = D Ss= 1.87 S,= 0.70 By Interpolation: Fa = 1.00 Fv = 1.50 Table 1613.5.3 (1) Site Coefficient (Fv) S1 < 0.1 0.2 0.3 0.4 >0.5 H A 0.8 0.8 0.8 0.8 0.8 g B 1.0 1.0 1.0 1.0 1.0 u W C 1.7 1.6 1.5 1.4 1.3 t: D 2.4 2.0 1.8 1.6 1.5 H E 3.5 3.2 2.8 2.4 2.4 Table 1613.5.3 (2) Page 2 of 5 Cp = Oj8 l GCpi = m$< Kz =2.01 (Z/Zg) R� a) qz= 0.00256 K z KzT K d V 2 P=qz (GCp + GCpi) Tabulated Result Site Class = D Ss= 1.87 S,= 0.70 By Interpolation: Fa = 1.00 Fv = 1.50 Table 1613.5.3 (2) Page 2 of 5 Cp = Oj8 l GCpi = m$< Kz =2.01 (Z/Zg) R� a) qz= 0.00256 K z KzT K d V 2 P=qz (GCp + GCpi) Tabulated Result Site Class = D Ss= 1.87 S,= 0.70 By Interpolation: Fa = 1.00 Fv = 1.50 I ROCA3 ENGINEERING Project JGanga Residence FORM L -01 STRUCTURAL DESIGN Address 10395 Farallone Drive Made by Page No. irc.w RESIDENTIAL/ COMMERCIAL Cupertino, CA JR 7/28/14 Page No. ENGINEERING Remarks Checked Revision Project No. GENERAL SPECIFICATION/ LATERAL DESIGN JR RO 316.070314 5.22 Spectral Response Acceleration SMs= Fa Ss = 1.00 x 1.87= 1.87 1 Sos= 2/3 (SMs) = 1.25 SMt= Fv SI = 1.50 x 0.70= 1.05 SDI= 2/3 (SMt) = 0.70 5.23 Horizontal Sismic Load Effect w/ Overstrength Load Combinations (ASCE 12.4.3.1) (1.0 +0.14SDS)D +0.7DoQe= 1.181) +2.1 Qe Do �3Q0� (0.6- 0.14SDs)D- 0.7DoQe= 0.43D +2.1Qe (1.0 + 0.15 Sos)D + 0.525 Oo Qe +0.75L +0.75 LLr = 1.19D + 1.58 Qe + 0.75(LL +LLr) 5.24 Design Base Shear R=I _ 6._50 1=1 1 1-00 TL =j 8.00 ;sec ASCE (12.8 -2) ASCE (12.8 -3) ASCE (12.8 -4) Ct =0 F)2 All other structural system X=1 0.75 18. hn = 2 ft T= Ct(hn) = 0.176 ASCE (12.8 -5) ASCE (12.8 -6) Use Cs = 0.192 V= CsW GOVERNING DESIGN BASE SHEARI V = 0.192 W 6. BUILDING PARAMETERS 6.1 Building Dimensions No. of Floors Levels 2 µ Total building height �-2�jft First floor height F. .x(}.75; , ; ft Nomenclature: n Subscript for floor levels Xn Building width Yn Building length An Diaphragm area Hn Floor height between levels X N Y Diaphragm Area (A„) REF PLAN Page 3 of 5 H2 H1 SECTION - - - - -- - - T s TL ) (T > TL) S, >_ 0.60 Cs = SDS Csmax= SDI j Csm.= Sol TL Csmi,= 0.01 Csmin= 0.5 St ( R/I) T( R/I ) T (R/I) CSmin= .044SDSI I ( R/I ) Cs = 0.192 Cs = 0.612 j Cs = NOT USED = 0.055 i Cs = 0.055 I Cs = 0.054 f Use Cs = 0.192 V= CsW GOVERNING DESIGN BASE SHEARI V = 0.192 W 6. BUILDING PARAMETERS 6.1 Building Dimensions No. of Floors Levels 2 µ Total building height �-2�jft First floor height F. .x(}.75; , ; ft Nomenclature: n Subscript for floor levels Xn Building width Yn Building length An Diaphragm area Hn Floor height between levels X N Y Diaphragm Area (A„) REF PLAN Page 3 of 5 H2 H1 SECTION 6.2 Roof /Floor Areas Ganga Residence 10395 Farallone Drive Cupertino, CA [W-1 1 Area ROCA3 ENGINEERING Deck Area STRUCTURAL DESIGN Bldg Width RESIDENTIAL/ COMMERCIAL ENGINEERING An fl?) ( 6.2 Roof /Floor Areas Ganga Residence 10395 Farallone Drive Cupertino, CA [W-1 1 Area Low Ro 0 Roof Deck Area Bldg Length Bldg Width Floor Level An (ft) Area A. (ft? An fl?) ( Xn Yn (ft) Roof 9149 400 360 18.2 [2nd floor lw�% � 90,; . - gpm 1320 1160 8.8 1 st floor 8 Oi ff rQO 920 T 800 0.8 70,602 -nagow" NO Level Weight 6.3 Wall Heights FORM L-01 Made by Page No. . JR 7/28/14 Checked Revision JR RO Floor Height i j Exterior Wall Interior Wall Tributary i Tributary Height of Floor Level I H. (ft) Length (ft) Length (ft) Ext. wall (fe) Int. wall (fe) I Diaphragm Roof 9149 400 360 18.2 2nd floor 1- lw�% � 90,; . - gpm 1320 1160 8.8 1 st floor 8 Oi ff rQO 920 T 800 0.8 70,602 -nagow" NO Level Weight 6.3 Building Weights 6.3a Roof weiaht Floor Level Area An 1 Unit weight Material (psi) (ft) (pSf) Weight (Ibs) Roof T 630 i 14.5 9149 Ext Waller 400:! 17.01 6800 Int Walls 601: 8.0 28801 9280 W UM U,,:,g��GWWW Level Weight = 1 70,602 -nagow" NO Level Weight Level Weight = 1 18,829 lbs 6.3b 2nd floor Area A. Floor Level i Unit weight i Material (ft2 (psi) Weight (lbs) if-Floor 5307 15.01 795011 rL-o-w Roof 21301 14.5 309321 Dec eck i 20.0. j 20.0 Ext Walls 17.0 i 22440 Int Walls 11601 8.0 9280 1-- -014, nif �OAW�E,�M U,,:,g��GWWW Level Weight = 1 70,602 6.4 Build Floor Level Level Z Weights Weights (ibs) (lbs) Roof 1-18,829 j 18,82£ 2nd floor 70,602 89,431 bs Page 4 of 5 I'Ll re-11 a I i-*:[ I] I Floor Level Area A. Unit weight (psf) material Weight s Floor 15.0 11-ow Roof 14.01 !Deck j 20.0 � Ext Walls 1 17.01 Int Walls 8.01 -nagow" NO Level Weight NOT USED 1 Floor Level Area An Unit weight (psi) Material � Weight (lbs) 'Floor 15.01 ILow Roof 14.51 iDeck 20.0!1 l Ext Walls 1 17.0 Int Walls 8.0 NO A; Page No. roject No. 16.070314 bs Level Weight = I lbs 6. 6 Base Shear Vu = 0.192 x 89,431 V= 17,162 lbs V= 17.162 kips 7. LATERAL FORCES 7.1 Seismic Forces 7.1a Lateral Force Distribution Project ROCA3 ENGINEERING kiae43 STRUCTURAL DESIGN Address RESIDENTIAL/ COMMERCIAL ENGINEERING Page No. 7. LATERAL FORCES 7.1 Seismic Forces 7.1a Lateral Force Distribution Project Ganga Residence FORM L -01 h`x Wx E h'x Wx Address 10395 Farallone Drive Cupertino, CA Made by Page No. JR 7128/14 Page No. Remarks 6.12 11.05 Checked Revision Project No. GENERAL SPECIFICATION/ LATERAL DESIGN JR RO 316.070314 T= 0.176 k= 1.00 C� FX =C, V Floor Level (x) ._� _- k_.__ .. hX h x ! Wx I (ft) (ft) (kips) -h�, Wx ! (kip -ft) h`x Wx E h'x Wx Fx (kips) Diaphragm Area (ft) Fx / Area ( Ibs/ ft) 1 Roof ,2nd floor _ 18.2.___J____18.2 _1- i .8 j 8.8 -18.83 70.60 342.06 617.77 0.36 0.64 6.12 11.05 630 2660 9.71 4.15 (Ibs/ ft) _ 231.0 20.42 (% Level max 416.0 Force (kips) 8.00 of j I I 0.32 18.83 6.12 F i 59.4 7.1b Lateral Diaphragm Force Distribution Fpx max = 0.4Sos I wpx =1 0.50 Iwpx ( %) Fpx min= 0.2SDs I wpx =i 0.25 lwpx ( %) Sos= 1.25 1= 1.00 -� Floor Level Fx I E Forces E Weights Forces r Weights % Level � Fpx min Fpx Level Weight Level Diaphragm Fx /Area 19.0 i_ 156.8 (kips) (kips) (kips) I 52.0 416.0 (kips) j 480.0 (Ibs/ ft) 3.20 231.0 20.42 (% Level max 416.0 Force (kips) 8.00 of 6.12 ` - j 6.12 18.83 0.32 0.32 18.83 6.12 9.71 2nd floor 11.05 17.16 i 89.43 0.19 0.25 70.60 17.61 6.62 S1 11.20 El 13.94 7.2 Wind Load - _ North -South Direction East West Direction Floor Level ! Wind Height l Projection (ft) -_:__8 ; Projected Building ': Wind Area Length X„ (ft) j ( ) Building Length Y. (ft) Projected Wind Area (ft) _3 woof 19.0 i_ 156.8 28.0 ! 231.0 12nd floor 8.0 52.0 416.0 60.0 j 480.0 _ 3.20 231.0 20.42 4.72 2nd floor _ 8.8 416.0 19.22 -(See 5.1 for wind pressures) SEISMIC LOAD GOVERNS Page 5 of 5 NORTH - SOUTH ELEVATION EAST -WEST ELEVATION Floor Level I Floor Level Height (ft) Projected Wind Area (ft) Wind Pressure" (psi Wind Force (kip) Projected Wind Area (ft2) Wind Pressure" (psf) Wind Force (kip) Roof 18.2 156.8 T- 20.42 3.20 231.0 20.42 4.72 2nd floor _ 8.8 416.0 19.22 8.00 480.0 19,22 9.23 !. - S1 11.20 El 13.94 SEISMIC LOAD GOVERNS Page 5 of 5 T4 VD'OMLH3&0 IMM MOTTMA 9860E 30NMISM VONVE) OE)NVII WJ 13001M aW N=" 03SOdONd :3uLL1-1sftw lz� 0 1 .1 I 1 1 -1 0 X o N �c ENGINEERING ROCA3 ENGINEERING STRUCTURAL DESIGN RESIDENTIAL/ COMMERCIAL Project Address Remarks Ganga Residence Grid Line FORM L -02 7 10395 Farallone Drive Made by Date Cupertino, CA JR 7/28/14 Page No. Qe (Ibs) LRFD Checked Rev. No. Project No. 3.25 SHEARWALL DESIGN JR RO 316.070314 Level wall height (h) = 9.00 ft Roof Lateral Force Factor = 9.31 psf Floor Lateral Force Factor = 4.45 psf Level Story Shear— 11827 Base Shear 17690 Ibs Ibs 1 FL SHEAR WALL 7283 LATERAL NORTH SOUTH DIRECTION F 1 nn 1 srn LOCATION LATERAL FORCE SHEAR WALL DESIGN ANCHORAGE DESIGN Grid Line b width (ft) Roof ( Floor AreaT AreaT (W) (ftZ) Ru (Ibs) LRFD V„ (lb /ft) LRFD PVC (lb /ft) LRFD 2w /h Shear Wall Type Shear Wall Capacity h height (ft) Qe (Ibs) LRFD 0.7Eh (Ibs) ASD Min. HD Size ASD R1 3.25 650 2890 889 I 1156 530 SW SW 9.00 8003 7283 SB R2 19.00 670 j 2979 157 204 1.00 1 416 9.00 1411 1284 HDU2 R3 5.75 425 1890 329 427 1.00 2 560 9.00 2958 2691 i HDU2 2161 1966 HDU2 RD 7.50 i 175 778 104 135 1.00 1 416 9.00 934 850 HDU2 i I I I i I j i 1745 7758 1 FL SHEAR WALL LATERAL EAST -WEST DIRECTION o Fnn 1/1 on 1 am LOCATION LATERAL FORCE SHEAR WALL DESIGN ANCHORAGE DESIGN Grid Line b width I (ft) Roof AreaT (ftZ) Floor Area (ftZ) R� (Ibs) LRFD V. (lb /ft) LRFD PV„ (lbift) I 2w /h LRFD S.W. Type S.W. Capacity (lb /ft) h height (ft) Qe (Ibs) LRFD 0.7Eh (Ibs) ASD Min: HD Size ASD RA 3.00 Shearwall Nailing 275 1223 408 530 1 SW SW 9.00 3668 3338 SB RB 12.50 150 i 925 5509 441 I 573 1.00 3 784 9.00 3966 3609 HDU5 RC 12.50 1017 675 3001 240 ; 312 1.00 1 416 9.00 2161 1966 HDU2 RD 7.50 1392 175 778 104 135 1.00 1 416 9.00 934 850 HDU2 i I I I I i 150 2050 10511 3 AND NOMENCLATURE SHEARWALL SCHEDULE ** Table 4.3a 2008 SDPWS H.D. CAPACITY DERIVATION OF FORMULA Capacity Capacity S.W. Sheathing LRFD ** Holdown (Ibs) b Total width of shear wall TYPE Material Shearwall Nailing (lb /ft) Material ASD h Height of shear wall p Reliability /Redundancy factor 1 1/2 " CDX plywood 8d at 6" o.c. 416 HDU2 3075 2 1/2 " CDX plywood 8d at 4" o.c. 560 HDU5 5645 R„ Seismic force (Area x Lateral force factor) 3 1/2 " CDX plywood 8d at 3" o.c. 784 HDU8 7870 v„ Strength level design shear (Ru/b) 4 1/2 " CDX plywood 8d at 2" o.c. 1017 MST48 4205 2w /h Height to width ratio (CBC2305.3.4) 5 1/2 " CDX plywood 1 Od at 2" o.c. 1232 MST60 6235 Qe Effect of horizontal seismic force (v„ x h) 6 1/2 " SRUCTI 1 Od at 2" o.c. 1 1392 MST72 6730 Eh Effect of horizontal seismic force (pQe) ory 01111psun Ovongwaii SIMPSON STRONG -TIE COMPANY INC. (800) 999 -5099 5956 W. Las Positas Blvd., Pleasanton, CA 94588. www.strongtie.com Job Name: 316.070314 Wall Name: Wall Line RA Application: Standard Wall on Concrete Design Criteria: * 2009 International Bldg Code * Seismic R =6.5 * 2500 psi concrete * Alternate Basic or Basic Load combination * ASD Design Shear = 860 Ibs Selected Strong -Wall® Panel Solution: SIMPSON ' 'br iil�" .ie i� _ . � NN . I End Total Axial Actual I Model Type W H T Sill s Anchor I Load Uplift (in) (in) ! (in) I Anchor Bolts (Ibs) (Ibs) �- -- - --- — 4 SSW18x9 Steel 18 105.25 3.5 N/A ; 2 - 1" 100 6396 lb Actual Shear & Drift Distribution: Actual Allowable Actual / Actual Drift Model Shear Shear Allow i Drift Limit (Ibs) (Ibs) Shear (in) (in) ( SSW 8x9 1 860 2145 OK ? 0.40 0.19 0.47 1- SSW18x9 is OK. Notes: / Disclaimer: It is the Designer's responsibility to verify product suitability under applicable building codes. In order to verify code listed applications please refer to the appropriate product code reports at www.strongbe.com or contact Simpson Strong -Tie Company Inc. at 1- 800 - 999 -5099. Page 1 of 1 SIMPSON STRONG-TIE COMPANY INC. (800) 999-5099 5956 W. Las Positas Blvd., Pleasanton, CA 94588. www.stmngte.com Job Name: 316.070314 Wall Name: Wall Line R1 Application: Standard Wall on Concrete SIMPSON Is 1-4 -7 Design Criteria: * 2009 International Bldg Code * Seismic R=6.5 * 2500 psi concrete * Alternate Basic or Basic Load combination * ASD Design Shear = 2025 lbs Selected Strong-Wall@ Panel Solution: . . ................... ... . . ............. . . . ......... . . ... End Total Axial Actual Model Type W H T sill Anchor Load Uplift i — ° -- (in) in (in) Anchor Botts (lbs) (lbs) i SSW15X9 Steel 15 V 100 10197 lb 105.25 3.5 i N/A 2 SSW15x9 Steel 1 15 1 105.25 3.5 1 N/A 2-1- 100 10197 lb . ... . .......... . .. . .. ... . ..................... — .......... ...... ..... ... .... ..................... .......... .... .......... . ............ . .......... . Actu al Shear & Drift Distribution: .. . . . . .. . . ... . ................................ ................. . ........... ......... .......... .. . ...... RR Actual Allowable i Actual 1 1 Actual Drift Model Relative Shear Shear Allow Drift Limit Rigidity (lbs) (lbs) Shear (in) (in) .. . . .......... . . ...... ........ SSVV15x9 0.50 1012 !!9 1315 OK 0.77 0.35 0.47 SsW15x9 0.50 1012 < 1315 OK i 0.77 0.35 0.47 2-SSW15x9 are OK along the same wall line. Notes: Disclaimer: It is the Designer's responsibility to verify product suitability under applicable building codes. In order to verify code listed applications please refer to the appropriate product code reports at www.strongtie.com or contact Simpson Strong-Tie Company Inc. at 1-800-999-5099. Page 1 of 1 gill BONMWN VONVO OONV"ll :MM'SOOVMGWN=OCVGSSOdOSd . .......... ....... .... ... .. .... p Eb �4 I z -------- ZI IL i Q ... ....... . uN QF¢ -57 T O'El ��' O g2 i I c, ENGINEERING I I ROCA3 ENGINEERING STRUCrURAL DESIGN RESIDENTIAL AND COMMERCIAL Project: Ganga Residence FORM B-01 jl Address: 10395 FaRALLONE Drive Cupertino, CA By Date JR 07.09.14 -Remarks: Check Rev Job No BEAM DESIGN JR RO 316.070314 1EOninm1mnumm TYPICAL RAFTER DESIGN D F No 2 , ROOF LOADS DESIGN CRITERIA °' Fb- psi DL= psf LDF Fv= psi LLr ,,7 psf g 5 =L/I 't.;., E= msi A 243 c h6s.on center Cr RAFTER SPAN TABLE Size i : " Max L (ftj,; Size factor b 41) d . �. (in) in 1 Sx (in) i; Vx Vx/va (kip) psi DL rl HAMM 11 psf LLr psf -- A 243 c h6s.on center Max L 2x6 '161 1.3 1.50,, 5.50 8-.'3'*.-.,l 7-6 0.36 msi 0.2 9 m s i 0.50 W 1.2 .50 1 7.25 mg: :13.1 6 0.47 41 �,10:9`* 0.29 0.66 �'242:;::: WO 16:8', 1 1 ..50, 9.25 '1 11.6 21.4 WO 0.59 0.28 21.4 0.79 4 1098 2xl2 J 5 1.0 15 11.25 f6 .*§ 31.6 1 0.68 %-V 0.27 .169 0.79 ',"4U 6.,-,'.j 2xl4 1 1 0.9 4.5.0- 13.25 13.2 43.9 15.9 0.76 0.76 inches fon cen t er 2x6 j 1.3 54-.." �!:j 5.50 7.6 0.22 :.;J.g 0.18 0.58 j = 242: 2x8 W 1.2 7.25 10.9 13.1 1;; 47 6 0.29 i 370 0.18 0.76 K 2xio t50"' 9.25 21.4 0.37 0.18 '0.97 „u7 2x12 1.0 1: 0,�.: 11.25 31.6 --F7 0.45 2 0.18 -TI K--o il 1.18 2x14 0-9n 7-V :1.50 13.25 !r**.:A-`9:§: 1 43.9 '0' 0.51 0.17 61 1.14 13.5 DL+LLr Max L TYPICAL HIP/ VALLEY DESIGN LVL Size Max PKI LjKl Size Fb x 2b00 Fv= psi 1 psi I Fb= Fv= 4 psi DL rl HAMM 11 psf LLr psf LDF 6 L/ MUNE Max L psi factor E= �?f,,j msi E= Vi 6f3 m s i DF NO.2 HIP/ VALLEY SPAN TABLE Size Max PKI LjKl Size cl S 'x Va (Ib) Max L Max L factor (in) pw) W 41 �,10:9`* 13.1 861 �'J-."' 10.6 11.6 WO 21.4 994 '1 4 1098 -2,1`4.5i-"-'j 12.0 1 13.8 1 2X12 %-V .169 31.6 ',"4U 6.,-,'.j 1336 884,"',"'j 13.2 15.9 2xl4 I :.;J.g 43-9 1573 14.1 -_9 Al 17.9 2-2x8 40,, " 12 „u7 *25 :218 26.3 1722 13.0 2 ,3Q0 e18 13.5 2-2x10 i4.7z. 'I- % 42.8 2197 14.7 2Q 7 16.1 2-2x12 1" .. . I�S -I' 3';8:, 63.3 0" 2672 16.1 18.5 2-2x14 F "Aliz, • 3 9 'R, 87.8 3147 17.1 1; 207 LVL HIP/ VALLEY SPAN TABLE Size Max L b d Ax i Sx Va (Ib) Max L Max L Max L (in) 1 Benclin Shear S 13/4 x 71/4 LVL :12'5 15.3 3013 15.0 73 -M ul 6 12.5 13/4 x 9 1/4 LVL �14 q;' 25.0 5A 3845 4676 17.5 198 K 14 .9 17.2 13/4 x 111/4 LVL 36.9 13/4 x 14 LVL 57.2 5819 22.7 S 20.1 q. 2 -13/4 x 71/4 LVL 30.7 -4 , 6027 18.4 -14 1406V 2-13/4 x 91/4 LVL 3 2.4` 49.9 7689 21.4 17.3 2-13/4 x 111/4 LVL 9.41 73.8 J�4i5:: .0" 9352 24T 19 9 19.9 2-13/4 x 14 LVL T' 3:50 t 1, Y . g-, 114.3 11638 jnj 27.3 7 r -4 �' 23.1 L _ .. I _4. _ R'," -1 �rc.w ENGINEERING ROCA3 ENGINEERING STRUCTURAL DESIGN RESIDENTIALAND COMMERCIAL Project : Ganga Residence FORM B -01 By Date JR 08.12.14 Page No Pn Wn Pn Point load Address: 10395 FaRALLONE Drive Cupertino, CA Remarks: Check Rev Job No BEAM DESIGN JR RO 316.070314 MODEL LOAD PATTERN Wn Uniform load Beam Size Location Roof" fi�>���F`> Pn Wn Pn Point load 3 1/2 x 117/8 PSL Beam Span 16.00 ft r x;E MATERIAL PROPERTIES SECTION PROPERTIES MM a Length of load C� -0 b Location of load o Fb= 2900 psi Ax= 41.6 in d= 11.875 in L L C Pt load location Fv= 290 psi Sx= 82.3 in b= 3.50 in 16.0 16.0 a =L Full length load E= 2.00 msi Ix= 488 in Cf= 1.00 UNIFORM LOAD POINT LOAD a i b a b DL LL LLr ITributary LLr ( %) WDL I WLL Wllr Load no c PDL i PLL PLLr Qe (kips) Load no (ft) I (ft) (k /ftz) (k /ftz) (k /ftz) (ft) I reduction (k /ft) (k /ft) (k /ft) ; reduction (ft) (kips) I (kips) (kips) wl 16.00 (kips) i 0.015 Qe (kips) 0.020 j 8.00 1.00 0.120 0.160 ! 9 -00 1.00 I 0.135 ; 0.180 I _; x „I 1 MOMENT DIAGRAM: DL +,75(LL +LLr) MEMBER STRESSES - DESIGN RESULTS ASCE 12.4.3.2 SDS = 1.00 0.71l 2.10 9.00 i DL+ 75 'a j (1+.14S DS) D5 (5 1450 DL+0.5 _ ._ _ _. - 800 Load Type DL LIL LLr DL +LL : DL +LLr MOMENT DIAGRAM: DL + °75(LL +LLr) DL +2.lge I '. DL 2 lge (LL +LLr) +q , .. - -_"- -• - -,= �` 700 = -- -_ fi _. -- -tom..- -= CD 1.00 I . 100x j 1.25 tl �.? 1.25 T: ..; j 1.60 p A:8 1.60 600 5.00 _.._ - Dt +LL .. .t : " 'T R Left kips 0.960 1.280 (LL +LLr) +qe I 2.240 1920' 7.00 ... .._...._....,. ... - - . i '_' CD 400 R Right kips 0.960 ;Yj 1.280 1.25 2.240 192Q,a;, 1.60 . I _ R Left kips - -,- . -. 1.440 Vallow kips _ 8.04 I 10.04 .. ,: 10.04 600 5 00 4.00 aoo �- r- -.-� -• -' --- �••• -' _ -_ R Right kips 1.080 z ao -; 2.5202 - r;-- location ft 8.00 kn, `j 8.00 Vallow kips 8.00 10.04 y'' 10.04 000 ' ' 3•00 M max k ft 3.84 5.12 200 8.96 '7 68?;il ...... . L 0.10 0.20 0.30 0.40 0.50 060 0.70 0.80 0.90 1.00 - - - " -' - Mallow kft 19.88 24.85 800 24.85 ,.00 000 0.00 DESIGN SUMMARY M Stress ratio 1: 0.19 s;j 0.21 j 0.36 D 39r: ra ( +)Mmax ratio= 1: 0.39 ( -)Mmax ratio= 1: 5 in 0.18 , „0 24 "I 0.42 0 'j 24.8 a "! 24.8 _ S /L ratio 1: 1060 I 795,_ y 454 M Stress ratio 1: 0.22 i 0.23 j Design Result I OK I OK j OK ( +)Mmax ratio= 1: 0.43 OMmax ratio= 1: ROCA3 Ewineerinc 02012 MODEL LOAD PATTERN Wn Uniform load Pn, Beam Size Location Roof fi�>���F`> Wn Pn Point load EMI a Length of load . 3 1/2 x 117/8 PSL Beam Span 16.00 ft MATERIAL PROPERTIES SECTION PROPERTIES o U a 0 b Location of load Fb= 2900 psi Ax= 41.6 inz d= 11.875 in L t c Pt load location Fv= 290 psi Sx= 82.3 in b= 3.500 in 16.0 16.0 a =L Full length load E= 2.00 msi Ix= 488 in Cf= 1.00 UNIFORM LOAD POINT LOAD a i b DL LL LLR Tributary LLr ( %) WDL WLL W� c PDL PLL PLLr Load no (ft) I (ft) (k /ftz) (k /ftz) (k /ft2) ; (ft) ; reduction (k /ft) (k/ft ) (k /ft) Load no (ft) (kips) (kips) i (kips) Qe (kips) W1 16.00 0.015 0.020 ! 9 -00 1.00 I 0.135 ; 0.180 I x „I 1 ,I MOMENT DIAGRAM: DL + °75(LL +LLr) MEMBER STRESSES - DESIGN RESULTS ASCE 12.4.3.2 SDS = 1.00 0.70. 2.10 . ,0.00 ) rDL +75 :' (1 +.145 ) (6 14SD };� DL +0.5 ...._ ._..__._._... _�... _ x = =� ;00 Load Type DL I LL LLr Dt +LL DL +LLr Ds s DL +2.lge DL 21ge: (LL +LLr) +qe aoo 7.00 ... .._...._....,. ... - - . i '_' CD 1.00 1.00 >' l 1.25 „ 100; _ 1 1.25 1 to x 1.60 1.. .,'; 1.60 . .... _. ........ _.... _. .. _ .. _ ... .. ....... ,. ... r.. -_ == J L R Left kips 1.080 -. 1.440 2.520 2160 600 5 00 4.00 �-1w -- �- r- -.-� -• -' --- �••• -' _ -_ R Right kips 1.080 a;; 1.440 -; 2.5202 , Vallow kips 8.04 10.04 y'' 10.04 3•00 200 ...... . L location ft -- 8.00 f ¢ x 8.00 800 ,.00 000 • ........ M max kft 4.32 { 5.76i 10.08 000 010 020 o.ao 0.40 oso 0.60 0.70 0.80 0.90 1.00 _ Mallow k-ft 19.88 24.8 W1 24.8 f9,5r: y DESIGN SUMMARY M Stress ratio 1: 0.22 i 0.23 j `:; 0.41 0 43 Ri, ( +)Mmax ratio= 1: 0.43 OMmax ratio= 1: S in -- - 0.20 _0.27 , ;, _ x, 0.48 S /L ratio 1: 942 707• = 404 Design Result OK 1 OK j I OK I OK ROCA3 ENGINEERING STRUCTURAL DESIGN Riall RESIDENTIALAND ENGINEERING COMMERCIAL I I Project : Ganga Residence FORM B-01 By Date JR 08A2.1-4 Page . No 011R g� rg� � MUM- Address: 10395 FaRALLONE Drive Cupertino, CA Remarks: Check Rev Job No I BEAM DESIGN I JR RO 316.070314 MODEL LOAD PATTERN Wn Uniform load Pn can Pn Point load mul - Length of load U U h b Location of load L L c Pt load location X6.0 length load Beam Size 31/2 X 117/8 PSL Location Roof Beam Span 16.00 ft 011R g� rg� � MUM- MATERIAL PROPERTIES SECTION PROPERTIES ll 2900 psi ll 290 psi E= 2.00 rnsi Ax= 41.6 in' d= 11.875 in Sx= 82.3 in 3 l 3.50 in Ix= 488 in 4 Cf-- 1.00 UNIFORM LOAD POINT LOAD Load no a (ft) b (ft) DL LL /ft (k (k/ft ll !Tributary ll reduction WDL (k/ft) W, (Ill WLLr (k/ft) Load no 77(ftc)l PDIL (kips) PILL) ( kips Pl (kips) Qe (kips) W1 16.00 a 1 0.020 j DIL (Ill 2) j 1.00 1.00 0.020 WDL I I Pi 8.00 j 0.960 (kips) kips) 1.280 I PLLr (kips) Qe (kips) W1 I 12.00 I 0.015 OK 0.020 7,00 1.00 i 0.1 0.140 P 1 7 0 0.200 77 77,-:77 .4 .7777777 77777777FTT777777 7 MOMENT DIAGRAM: DL +.75(LL+LLr) MEMBER STRESSES - DESIGN RESULTS ASCE 12.4.3.2 SDS = 1.00 0.7U-.= 2.10 Load Type �-W LLr + DL+ 75 % (1 +.145 o,) Dll (LL+LLr)+Qe 1600 T ...... . .... ........ ........... ....... ....... . . .......... .... 14,00 1200 . 10 0o - 8 00 600 4.00 2.00 0.00 0+00 0.10 o20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 DESIGN SUMMARY D ....60 100 125 125 1 ':`,4.,60'�-' 1.60 R Left kips 1.383 j 1.630 3.013 2 605` RRig Right kips 0.978 '5' 1.090 2.068 Vallow kips 8.04 10.1N 10.04 tion loca ft 8.00 8.00 n`,A�Ij�,;��-,i 8.00 M max k 7.18 8.72 15.90 Mallow k-ft s ratio 1: M Stress 19.88 0.36 L 24.85 0.35 5 24.85 0.64 A W (+)Mmax ratio= 1: 0.69 (-)Mmax ratio= 1: in 0.31 0'37"4::� 0.68 5 /L ratio 1: 622 517 j 282 Design Result OK -'-OK OK 0 W.- 7 MOMENT DIAGRAM : DL+.75(LL+LLr) MEMBER STRESSES- DESIGN RESULTS 50 0 ,, 4�60 A.00 3.60 3.00 2.50 2.00 1 , 50 1.00 0 50 0 0 nv cilyllittvirly WdU.LZ DL LL . ................ 61`145 ; 2Qe C, . . . . . . ... ..... = . ..... MODEL LOAD PATTERN II Pn Win U h a U L L 12.0 12.0 Wn Pn a b c a=L Uniform load Point load Length of load Location of load Pt load location Full length load Beam Size 4 x 12 DF2 Location Beam Span Roof 12.00 ft MATERIAL PROPERTIES SECTION PROPERTIES Ill 875 psi ll 180 psi E= 1.30 msi Ax= 39.4 in 2 d= 11.250 in Sx= 73.8 in 3 l 3.500 in lx= 415 in 4 Cf= 1.00 UNIFORM LOAD 5.91 ......... ..... . location ft M max k-fr POINT LOAD i Load no a i b (ft)- DIL (Ill 2) ILL ! /ft2) I' (k I LLR i I !Tributary LLr i (ft) ! reduction WDL I WLL WLLr (k/ft) Load no C) I ft (kips) kips) PLL (kips) I PLLr (kips) Qe (kips) W1 I 12.00 I 0.015 OK 0.020 7,00 1.00 i 0.1 0.140 P 1 7 0 0.200 77 77,-:77 7 MOMENT DIAGRAM : DL+.75(LL+LLr) MEMBER STRESSES- DESIGN RESULTS 50 0 ,, 4�60 A.00 3.60 3.00 2.50 2.00 1 , 50 1.00 0 50 0 0 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0,90 1.00 Mallow. _k ft DESIGN SUMMARY M Stress ratio 1: 0.42 0.45 (+)Mmax ratio= 1: 0.85 (-)Mmax ratio= 1: 8 in 0.11 I 0:14 � 5/1- ratio 1: 1341 1006, a Design Result OK OK ASCE 12.4.3.2 SDS = 1.00 0.70.= Load Type DL LL . ................ 61`145 ; 2Qe C, . . . . . . ... ..... = . ..... 1.25 R Left kips 0.693 ..... ... .......... j 0.923 . . . . . . . . . . . . .. ...... . 0.718 0.957 4.73 5.91 ......... ..... . location ft M max k-fr . ............ .... . . ......... . .......... ...... . .. . ............. i 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0,90 1.00 Mallow. _k ft DESIGN SUMMARY M Stress ratio 1: 0.42 0.45 (+)Mmax ratio= 1: 0.85 (-)Mmax ratio= 1: 8 in 0.11 I 0:14 � 5/1- ratio 1: 1341 1006, a Design Result OK OK ASCE 12.4.3.2 SDS = 1.00 0.70.= Load Type DL LL LLr 61`145 ; 2Qe C, 1.00 1.25 R Left kips 0.693 j 0.923 R Right kips Vallow Nos 0.718 0.957 4.73 5.91 5.91 location ft M max k-fr 6.60 i j 6.60 2 28 5.33 ILL6.7 3 04 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0,90 1.00 Mallow. _k ft DESIGN SUMMARY M Stress ratio 1: 0.42 0.45 (+)Mmax ratio= 1: 0.85 (-)Mmax ratio= 1: 8 in 0.11 I 0:14 � 5/1- ratio 1: 1341 1006, a Design Result OK OK ASCE 12.4.3.2 SDS = 1.00 0.70.= 2.10 DL+LLr 1+.14S,)5 Dll 61`145 ; 2Qe j Dll (LL+LLr)+Qe 1.25 1.60 1.60 1.616 1.674 5.91 6.601 5.33 ILL6.7 0.79 Q -- ---------- 0.25 0 21 575 OK OK ENGINEERING I ROGA3 ENGINEERING STRUCTURAL DESIGN RES] DENTIAL AND COMMERCIAL Project : Ganga Residence FORM B-01 By Date Page No JR 08.12.14 G+ •14 DS1 Address: 10395 FaRALLONE Drive Cupertino, CA Remarks: Check EJR Rev Job No BEAM DESIGN 0.23 R 316.070314 MODEL LOAD PATTERN Wn Uniform load Beam Size Location Roof kR;Z G+ •14 DS1 Pin Wn Pn Point load 51/4 x 14 PSIL Beam Span 19.50 ft DESIGN SUMMARY MATERIAL PROPERTIES 0.23 SECTION PROPERTIES Q Em a Length of load U h t a 1 0 b Location of load Fb= 2900 psi Ax= 73.5 in 2 d= 14.000 in L I L f C Pt load location Fv= 290 psi Sx= 171.5 in 3 b= 5.25 in 19.5 19.5 a=L Full length load E= 2.00 msi lx= 1201 in 4 Cf= 0.98 R Right kips UNIFORM LOAD 388 3.014 POINT LOAD Load no Design Result OK a I b DIL ILL LLr iTributary reduction LLr WIL WLL WLLr 9A6 9,48 1-7 c PDL PILL PLLr 16.00 Load n 01 (ft) (ft) (k/ft') (k /ft 2) i k/ft' ► 1 1 (ft) 1 I reduction 1 (k/ft) (k/ft) i (k/ft) Load no (ft) (kips) (kips) (kips) Cle (kips) wl 14.00 1 0.015 0.020 14.00 1 0.96 j 0.210 j 0.270 P1 14.00 0.360 0.480 0 F 7777 MOMENT DIAGRAM: DIL +.75(LL+LLr) MEMBER STRESSES -DESIGIN RESULTS ASCE 12.4.3.2 MOMENT DIAGRAM: DIL +.75(LL+LLr) MEMBER STRESSES - DESIGN RESULTS ASCE 12.4.3.2 SDS = 1.00 0.70.= 2.10 JS DL+O 20.00 1&00 16.00 14.00 1200 10.00 8.00 6+00 4.00 2,00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Load Type DL ILL LLr p , DLr'4+,-. DL+LLr G+ •14 DS1 tabst, a Length of load MATERIAL PROPERTIES DESIGN SUMMARY M Stress ratio 1: 0.23 DL+2.lQe Q (LL+LLr)+Qe Sx= 82.3 in 3 b= 3.500 in Co 1.00 1.25 Ix= 488 in 4 Cf= 1.00 1.25 1.60 0.26 1.60 V R Left kips 1.986 2.556 LLR 4.542 LLr (%) WDL 6/L ratio 1: 888 R Right kips 1.314 l 1.700 388 3.014 Load no Design Result OK Vallow kips 14.21 17.76 OK 17.76 reduction (k/ft) (k/ft) (k/ft) Load no location ft 9A6 9,48 (kips) 9.47 Qe (kips) W1 16.00 M max k-ft 9.39 1 sj 12.11 21.50t, 18 47 I 1.00 0.020 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Mallow k-ft 40.74 50.93 Pin Win Pn Point load 50.93 . 74 a Length of load MATERIAL PROPERTIES DESIGN SUMMARY M Stress ratio 1: 0.23 0.24 Pt load location 0.42 Sx= 82.3 in 3 b= 3.500 in 16.0 16.0 G=L Full length toad E= 2.00 rnsi Ix= 488 in 4 Cf= 1.00 (+)Mmax ratio= 1: 0.45 (-)Mmax ratio= 1: 5 in 0.26 a V 0.60 ILL LLR Tributary! LLr (%) WDL 6/L ratio 1: 888 C PDL 388 4 Load no Design Result OK OK llcN OK (ft) reduction ROC43 Engineering 02012 MODEL LOAD PATTERN Wn Uniform load Beam Size Location Roof *WPI-f Pin Win Pn Point load 3 1/2 x 117/8 PSIL Beam Span 16.00 ft a Length of load MATERIAL PROPERTIES SECTION PROPERTIES b Location of load Fb= 2900 psi AX= 41.6 in' d= 11.875 in Pt load location Fv= 290 psi Sx= 82.3 in 3 b= 3.500 in 16.0 16.0 G=L Full length toad E= 2.00 rnsi Ix= 488 in 4 Cf= 1.00 UNIFORM LOAD POINT LOAD a b DIL ILL LLR Tributary! LLr (%) WDL WLL WLLr C PDL PILL PLLr Load no (ft) (ft) ( 1 (k/ft') (k/ft') (k /ft2) (ft) reduction (k/ft) (k/ft) (k/ft) Load no (ft) ( (kips) (kips) (kips) Qe (kips) W1 16.00 0,020 1.00 1.00 0.020 Pi 1.00 j 1.986 2.556 F 7777 MOMENT DIAGRAM: DIL +.75(LL+LLr) MEMBER STRESSES -DESIGIN RESULTS ASCE 12.4.3.2 SDS= 1.00 0.70�= 2.10 4.00 (1+,14S DS) DL+O ...... .... - Loa Load Type DL LLr DL+LLr 3.50 DL+2.lQe ZL-2AQe.' (LL+LLr)+Qe 3.00 Co 1.00 1.25 1.25 2.50 R Left s kip 2.022 2.396 4.418 200 ....... R Right kips 0.284 0.160 0.444 b14 ....... ... H, HE.' Vallow kips 8.04 i 10.04 10.04 1.00 location ft 1.79 1.00 1.00 k-ft 2.02 2.40 4.41 0.00 10 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0.00 Mallow k- ft 19.88 24. 24.8 DESIGN SUMMARY M Stress ratio 1: 0.10 r7,+:.,,.--�t, 71 0.10 10:- 0.18 (+)Mmax ratio= 1: 0.19 (-)Mmax ratio= 1: S in ().09 0.16 6/L ratio 1: 2207 -,2" 1195 I 135f1 Design Result OK j OK I OK OK ENGINEERING ROCA3 ENGINEERING STRUCTURAL DESIGN RESIDENTIAL AND COMMERCIAL Project : Ganga Residence FORM B -01 By I Date Page No JR 108.12714 _ Address: 10395 FaRALLONE Drive Cupertino, CA Remarks: Check Rev Job No BEAM DESIGN JR I RO 1 316.070314 MODEL LOAD PATTERN Wn Uniform load Beam Size Location - - -- - - --r Roof - - - ��,��W PR Wn Pn Point load 51/4 x 117/8 PSL Beam Span 17.00 ft 11 �^'� ( %) ! reduction MATERIAL PROPERTIES Load no c (ft) SECTION PROPERTIES PLL (kips) PLLr (kips) am a Length of load Fb= 2900 psi Ax= 62.3 inZ d= 11.875 in U 0 b Location of load c L j L j c Pt load location Fv= 290 psi Sx= 123.4 in3 b= 5.25 in 17.0 17.0 a =L Full length load I E= 2.00 ms! Ix= 733 in Cf= 1.00 UNIFORM LOAD POINT LOAD a b DL LL LLr Tributary LLr ( %) . WDi Wu WLU Load no c PDL PLL PLLr Qe (kips) Load no (ft) (ft) Z Z Z (k /ft) (k /ft) , (k /ft) (ft) reduction (k /ft) ! (k /ft) (k /ft) (1 +A45DS) DL +2.SQe (ft) (kips) (kips) (kips) DL+0.5 (LL +LLr) +q wl 600 '• ! 0 015 1 1 0 020 7.00 I 1.00 1 0.105 j 0.140 P1 6.00 I 0.600 1 0.800 1.294 1.709 i '. -T - - -- - - --r -- i - - - SECTION PROPERTIES Fb= 875 psi Fv= 180 psi E= 1.30 msi Ax= 39.4 in d= 11.250 in Sx= 73.8 in' b= 3.500 in Ix= 415 in4 Cf- 1.00 UNIFORM LOAD POINT LOAD Load no { a (ft) b DL Z LL Z LLR Tributary (ft) (k /ft) (k /ft) (k /ft) j (ft) ( %) ! reduction WDi WLL WLLr I (k /ft) (k /ft) ! (k /ft) Load no c (ft) PDL (kips) PLL (kips) PLLr (kips) Qe (kips) wl 8.00 0.015 ! 0.020 9.00 ' 100 1 0.135 0.180 P1 400 0,284 0.160 MOMENT DIAGRAM: DL +,75(LL +LLr) MEMBER STRESSES - DESIGN RESULTS ASCE 12.4.3.2 SDS = 1.00 0.7i]o 2.10 ,4.00 ,ZDO to 00 Boo _> 400 zoO o.00 M o.oD o.,o -.- M ' ...._ m - - - r k_._.m... 0.90 1.00 Load Type ; ); DL LL LLr a * DL +LL ' DL +LLr DL+ 75 (E1 +LLr) (1 +A45DS) DL +2.SQe (6 145�)i DL Y3Qe; DL +0.5 (LL +LLr) +(1e (1 +.145DS) DL +2.SQe - DL+0.5 (LL +LLr) +q CD 1.00 it 100" 1.25 100 ° 1.25 "1"., ;. 1.60 1.60 160 1 1.60 ., - ; ....+ R Left kips RRight kips 1.294 1.709 , 3.003 2 576 - - 1.250 <'''I 1.631 r 2.881 2473, 1 r - - - -- Vallow kips 12.05 15.07 " 15.07 1 QQ 1.60 1 b0 :, .1.60 . 2s0- _ location ft 12.00 12.00 1200 . 12 zoo °+ - � M max k jY 6.25 ;i 8.15 i 14.41 R12.37::x R Left o.zo 0.30 0.40 oso 0s0 0.70 o.eo _ _ Mallow k ft 29.82 -d 37.27 „ 37.27 DESIGN SUMMARY M Stress ratio 1: _ 0.21 > I 0.22 j 0.39 ( +)Mmax ratio = l: 0.41 OMmax ratio = l: S in 0.22 i Q 29 I 1.482 0.52 50 _ b /L ratio 1: 908 { , 692 , °' ; F 393 Design Result OK "i OK q OK QKr ,Et. ,.00 xut_.vs tngmeenng wzu-L MODEL LOAD PATTERN Wn uniform load Fn Wn Pn Point load a Length of load -O b Location of load c L I L I c Pt load location 8.0 8.0 a =L Full length load Beam Size 4 x 12 DF2 Location Roof Beam Span 8.00 ft e� MATERIAL PROPERTIES SECTION PROPERTIES Fb= 875 psi Fv= 180 psi E= 1.30 msi Ax= 39.4 in d= 11.250 in Sx= 73.8 in' b= 3.500 in Ix= 415 in4 Cf- 1.00 UNIFORM LOAD POINT LOAD Load no { a (ft) b DL Z LL Z LLR Tributary (ft) (k /ft) (k /ft) (k /ft) j (ft) ( %) ! reduction WDi WLL WLLr I (k /ft) (k /ft) ! (k /ft) Load no c (ft) PDL (kips) PLL (kips) PLLr (kips) Qe (kips) wl 8.00 0.015 ! 0.020 9.00 ' 100 1 0.135 0.180 P1 400 0,284 0.160 MOMENT DIAGRAM : DL +.75(LL +LLr) MEMBER STRESSES -DESIGN RESULTS ASCE 12.4.3.2 SDS = 1.00 0.7f)o 2.10 3.50 Load Type , - ".. =! DL LL LLr ` i:'1 DL +LL .1I :I DL +LLr QL+ 75 :' { (LL +LLr) (1 +.145DS) DL +2.SQe (6 14SDS): DL Z1Qe DL+0.5 (LL +LLr) +q .� _ 3.00 _ -_, - r CD 1.00 100. `{ 1.25 100 j 1.25 1 QQ 1.60 1 b0 :, .1.60 . 2s0- _ zoo R Left 0.682 r I 0.800 1.482 I 1282 RRight kips 0.68_2 0.$00 I 1.482 1282 ..I 50 _ ,.00 Vallow kips 4.73 5.91 .;' 5.91 I 473:: r_ location ft M_ _m_ax_ _ k fr - Mallow _ k ft M Stress ratio 1: 4.00 I { 4:00 4.00 4 QO 0.50 °- _-' 1.65 1.76 I 3.41 k , 2 97,•„ i 0.00 - - 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.60 0.90 ^1.00- 5.38 { 6.7 6.7 DESIGN SUMMARY 0.31 i, 0.26 s 0.51 ( +)Mmax ratio= 1: 0.55 ( -)Mmax ratio= 1: S _ in -- -ratio 1. S / 0.03 0 04 0.07 0 O6 ",•,;; 2932 sl 1393 1603 == Desi n Result OK OK OK OK kix43 ENGINEERING ROCA3 ENGINEERING STRUCTURAL DESIGN RESIDENTIAL AND COMMERCIAL Project : Ganga Residence FORM B -01 By Date JR 07.09.14 Page. No / ` Address: 10395 FaRALLONE Drive Cupertino, CA Remarks: Check Rev Job No BEAM DESIGN JR RO 316.070314 MODEL LOAD PATTERN Wn uniform load Beam Size Location Roof' �,,N R Pn Wn Pn Point load 4 x 12 DF2 Beam Span 12.00 ft,. + MATERIAL PROPERTIES SECTION PROPERTIES um a Length of load Fb= 875 psi Ax= 39.4 in d= 11.250 in I a t ? b Location of load c L L Pt load location Fv= 180 psi Sx= 73.8 in' b= 3.50 in 12.0 T 12.0 a =L Full length load E= 1.30 msi Ix= 415 in4 Cf= 1.00 UNIFORM LOAD POINT LOAD PDL ki (kips) a b DL LL LLr Tributary LLr (%) ! WDL WLL WLLr 0.068 c PDL PLL PLLr 0.510 Load no 0.680 Load no MEN Qe (kips) (ft) (ft) k /ft2) (k /ft2) (k /ft2) ! (ft) reduction (k /ft) (k /ft) (k /ft) (ft) (kips) (kips) (kips) W1 12.00 i 0.015 0.020 4.00 1.00 1 0.060 0.080 Pl 6.00 0.300 0.400 ' ! I I E ( tt at MOMENT DIAGRAM: DL + °75(LL+LLr) MEMBER STRESSES - DESIGN RESULTS ASCE 12.4.3.2 SIDS = 1.00 0.70. 2.10 3.00 2so Sao 0.50 o.ao 0.00 Load Type DL I g LL`' :{ II LLr i DL +IL•;; T „ "_;. DL +LLr DL +75 :, '�(LT. +LU).; (1 +.145DS) DL +2.1Qe (fi- 7.45pS) DL2 ?Qe:I(LL DL+0.5 +LLr) +qe .. _ -+ _ = CD 1.25 ,10, 1 k 1 1.60 160Y .,l 1.60 i -t R Left kips MOMENT DIAGRAM: DL +.75(LL +LLr) MEMBER STRESSES - DESIGN RESULTS ASCE 12.4.3.2 SIDS = 1.00 0.7(2,= 2.10 0.340 Y - 0.867 0 782 i ' 7S(1 +.14SDS) b 14oa DL+0.5 0.527 0.340 0.867 Load Type DL w...' >x�.u.: LLr DL +L` LLr Vallow kips 4.73 .,,, :;,i 4.00 o P "i 5.9173fi: DL +2.lQe DL 2 ?Qe: (LL +LLr) +4 3.50 location ft 4.00 I C o 1.00 1 E)0 .; 1.251 Of" 1.25 1 1.60 1_SO 1.60 ' � ':z__t•.'x r-.._ RLeft kips 0.510 0.60 82.50 1.190 1020 3 r k 3.00 -- _. _ M max k ft zoo �.._ 1.36 _ R Right kips 0.510 ., 0.680 `` 1.190 _ 00 ° 0.70 0.80 0.90 1.00 Mallow k ft 5.38 t, 6.7 Vallow kips 4.73 ( -- 5.91 : 5.91 4 73 0.29 0.20",.;: _ _....._ ... .- ._ ......_ ^..... 1.00 S in 0.03 ),;;,0 02 W w l location ft 6.00 i i 6.00 r: 6.00 a S 00 X4135 -, , * „ }, ., ,' 0.50 o.ao .. ._.... ._._...........__. ._.r.. . _ .. _ .....'• __._._. •.:�.:. `,- 3•.-.. i:.'.'.I • - -� M max kft 1.98 L: 2.64. i s� 4.62 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Mallow kft 5.38 6.73 _ g; s 6.73 0.00 DESIGN SUMMARY M Stress ratio 1: 0.37 ,; .ii 0.39`' 0.69 ( +)Mmax ratio = l: 0.74 ( -)Mmax ratio = l: S in 0.09 0.20 5/1- ratio 1: 1666 1250 714 Design Result OK ) OK Iq OK OK'd ROG43 Enaineerina 02012 MODEL LOAD PATTERN Wn Uniform load Pn Wn Pn Point load HM a Length of load Cry b Location of load C L L c Pt load location 8.0 8.0 a =L Full length load Beam Size 4 x 12 DF2 Location Roof Beam Span 8.00 ft ' MATERIAL PROPERTIES SECTION PROPERTIES Fb= 875 psi Fv= 180 psi I E= 1.30 msi Ax= 39.4 in d= 11.250 in Sx= 73.8 in b= 3.500 in Ix= 415 in Cf= 1.00 UNIFORM LOAD POINT LOAD Load no a ! b (ft) (ft) DL j I (k /ft2) LL (k /ft2) LLR (k /ft2) !Tributary: ! ft ( ) LLr ( %) reduction WDL (k /ft) Wu (k /ft) WLLr k ( /ft) Load no c ft O PDL ki (kips) PLL (kips) PLLr (kips) Qe (kips) W1 8.00 0.017 j j 4.00 1.00 0.068 Pi 4.00 0.510 0.680 MEN En ' ! I I E ( tt at MOMENT DIAGRAM: DL + °75(LL+LLr) MEMBER STRESSES - DESIGN RESULTS ASCE 12.4.3.2 SIDS = 1.00 0.70. 2.10 3.00 2so Sao 0.50 o.ao 0.00 Load Type DL I g LL`' :{ II LLr i DL +IL•;; T „ "_;. DL +LLr DL +75 :, '�(LT. +LU).; (1 +.145DS) DL +2.1Qe (fi- 7.45pS) DL2 ?Qe:I(LL DL+0.5 +LLr) +qe .. _ -+ _ = CD 1.25 ,10, 1.25 k 1 1.60 160Y .,l 1.60 -t R Left kips 0 °527 ?j 0.340 Y - 0.867 0 782 R Right kips 0.527 0.340 ... z...1 °:' 0.867 0 782 w...' >x�.u.: Vallow kips 4.73 .,,, :;,i 5.91 o P "i 5.9173fi: location ft 4.00 I 4.00 k - `" 4.00 400, - _ -- M max k ft 1.56 `I 1.36 2.92' 010 020 0,30 0.40 0.50 0.80 0.70 0.80 0.90 1.00 Mallow k ft 5.38 t, 6.7 6.7 DESIGN SUMMARY M Stress ratio 1: 0.29 0.20",.;: 0.43 1 ( +)Mmax ratio= 1: 0.48 ( -)Mmax ratio = l: S in 0.03 ),;;,0 02 W w l 0.05 6/1- ratio 1: 3308 X4135 -, , * „ }, ., ,' 1838 X2068 .` Design Result OK OK OK ! OK Z ^J ,ENGINEERING ROCA3 ENGINEERING STRUCTURAL DESIGN RESIDENTIALAND COMMERCIAL Project : Ganga Residence FORM B -01 By Date page No A 07.09.14 MATERIAL PROPERTIES Address: 10395 FaRALLONE Drive Cupertino, CA Remarks: Check Rev Job No BEAM DESIGN JR R0 316.070314 !Tributary (ft) LLr (%) WDL reduaion (k /ft) Wu (k/ft Wur (k /ft) Load no MODEL LOAD PATTERN Wn Uniform load Pn Pn Point load Wn HM a Length of load -O b Location of load C L L c Pt load location 4.0 4.0 a =L Full length load Beam Size 4 x 10 DF2 Location Roof Beam Span 4.00 ft � ? ��- MATERIAL PROPERTIES SECTION PROPERTIES Fb= 875 psi Fv= 180 psi I E= 1.30 msi Ax= 32.4 in d= 9.250 in Sx= 49.9 in b= 3.50 in Ix= 231 in Cf- 1.00 UNIFORM LOAD POINT LOAD Load no a i (ft) b (ft) DL (k /ftZ) LL (k /ftZ) j LLr (k /ftz) ITributary (ft) LLr N j reduaion WDL k ft (/) I WLL (k /ft) WLs (k /ft} Load no c (ft) PDL ! (kips) PLL (kips) PLLr (kips) Cie (kips) wl 4.00 0,017 ! i 4,00 j 1.00 0.068 Pl Z.00 j 0.960 1.280 •. . ... MOMENT DIAGRAM: DL +.75(LL +LLr) MEMBER STRESSES -DESIGN RESULTS ASCE 12.4.3.2 SIDS = 1.00 0.7(20= 2.10 4.00 3'S0 3.00 2 2.00 1.00 0s0 0.00 0.00 Load Type DL k f LL ; ° %� LLr DL +LL ; DL +LLr DL +75 (1 +.14SD5) DL +Z.1Qe (6 I450Sf DL -2AC10 DL+0.5 (LL +LLr) +cte I" MOMENT DIAGRAM: DL +.75(LL +LLr) MEMBER STRESSES - DESIGN RESULTS ASCE 12.4.3.2 SDS = 1.00 0.700 2.10 z so zao 150 050 0.00 0.00 1.00 100;' ,; 1.25 100: ` 1.25 1 DD 1.60 160 1.60 Load Type DL LL . i LLr rOL+LL n DL +LLr QL+ 75 , w LLtlr ` ( ) (1 +.14SDS) DL +2.iQe (fr 14Sos} - F; DL -21Qe DL+0.5 (�L +LLr) +4 .:. 1050 l t _ -r * 0.525 i' ' 1.225 A- "A"J" a . � -- CD 1.00 1 Oci . °;l 1.25 { 1.25 1.60 1'60 1.60 n ft _{ �{ R left kips - ... - R Right_ kips 0.616 7.00 0.640 " 1.256 1096 n -� I.; -= ' M max k ft 1.84 C 1 2.45 4.293 '° - 010 = 0.40 0.50 060 0.70 0.80 090 0.616 -' "' -- Mallow k ft 0.640 5 1.256 - 6.7 " 5" 4'," r� = i- M Stress ratio 1: 0.34 0.36 0.64 Vallow kips 3.89 4.86.. ( +)Mmax ratio= 1: 0.68 ( -)Mmax ratio= 1: 4.86 3 89 „ , ,0,16, s, :; i• 1 i 0.28 ._ --- 2049 I-- 600 -^- J location ft 2.00 ' 2.00 2.00 2Q0 M max k- ft 1.10 1.28 t 2.38 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Mallow kft 3.64 4.55 ` ,', 4,55 - DESIGN SUMMARY M Stress ratio 1: 0.30 0.28 0.52 ( +)Mmax ratio= 1: 0.56 ( -)Mmax ratio= 1: S in 0.01 j `fl 01 _ „ " 0.02 6/1- ratio 1: 5533 ;4884,,, , 2594 299Y .' Design Result OK OK j OK ROC43 Enaineerina 02012 MODEL LOAD PATTERN Wn Uniform load Pn Wn Pn Point load a Length of load b Location of load C L I T L c Pt load location 14.0 14.0 a =L Full length load Beam Size 4 x 12 DF2 Location Roof Beam Span 14.00 ft "fir Va MATERIAL PROPERTIES SECTION PROPERTIES Fb= 875 psi Fv= 180 psi E= 1.30 msi Ax= 39.4 in' d= 11.250 in Sx= 73.8 in3 b= 3.500 in Ix= 415 in Cf= 1.00 UNIFORM LOAD POINT LOAD a Load noel (ft) b DL (ft) (k/ft, I LL (k /ft2) ; LLR (k /ftZ) !Tributary (ft) LLr (%) WDL reduaion (k /ft) Wu (k/ft Wur (k /ft) Load no C (ft) PDL (kips) PILL (kips) PLLr (kips) Cie (kips) wl 14.00 1 , 0.015 0.020 i 5.00 1.00 0.075 0.100 •. . ... MOMENT DIAGRAM: DL +.75(LL +LLr) MEMBER STRESSES -DESIGN RESULTS ASCE 12.4.3.2 SIDS = 1.00 0.7(20= 2.10 4.00 3'S0 3.00 2 2.00 1.00 0s0 0.00 0.00 Load Type DL k f LL ; ° %� LLr DL +LL ; DL +LLr DL +75 (1 +.14SD5) DL +Z.1Qe (6 I450Sf DL -2AC10 DL+0.5 (LL +LLr) +cte I" CD 1.00 100;' ,; 1.25 100: ` 1.25 1 DD 1.60 160 1.60 - -= R Left kips 0,525 I 0.700 h 4 ' l 1.225 1050 l _" _ -- R Right kips 0.525 0.700 1.225 A- "A"J" a . � -- Vallow kips 4.73 5.91: { 5.91 n ft 7.00 �{ 7.00 7.00 7 (� n -� fi==r- -= ' M max k ft 1.84 C 1 2.45 4.293 fib, h 010 0.20 0.30 0.40 0.50 060 0.70 0.80 090 1.00 -' "' -- Mallow k ft 5.38 y 6.7 - 6.7 " 5" 4'," DESIGN SUMMARY M Stress ratio 1: 0.34 0.36 0.64 068, ( +)Mmax ratio= 1: 0.68 ( -)Mmax ratio= 1: 5 in S /L - -ratio 1: 0.12 „ , ,0,16, s, :; i• ry;; 0.28 1399 { 2049 r 600 7t1Q , Design Result OK ; OK OK OK VO 'ONlIEWO VW 33NMissu vE)NvE) ooNVII cn IQI'BOOIM CM rioaxwcasodom iz-V 0 z z1 51 CL Z 0 z m 0 LL. J( m /, k r----- ---- ----- - ------- - ------ oln*dlAa z, 1: og Ir -------- --------- It' -Q- iz-V 0 z z1 51 CL Z 0 z m 0 LL. J( m /, k kioeAl ENGINEERING ROCA3 ENGINEERING STRUCTURAL DESIGN RESIDENTIAL AND COMMERCIAL Project: Ganga Residence FORM B -01 DL = `50 psf Address: 10395 FaRALLONE Drive Cupertino, CA By Date JR 07.28.14 Remarks: Check Rev Job No BEAM DESIGN JR RO 316.070314 ltillllllllH1llllllllll TYPICAL FLOOR J015T DE51GN DF No `; ROpF LOADS DESIGN CRITERIA' Fb83,5 psi DL = `50 psf LDF Fv180 psi a LL= L /IO E- 160 a� msi (tn2)..1.� (in3J Cr = AWNZ FLOOR JOIST SPAN TABLE size b I . � .:.Ax Sx d . „ .Vx Size Vx /Va factor M)...M.a . , liS n ) rSa/tit o ..:, xj < x s 36 mchi ohcenter 2x6 9 S.-, 1.3 1 1 50 5.50 8 3 :: 7.6 20 8; 0.35 9 $2 0.35 =100 0.40 284 2x8 12 0 ;; 1.2 150 ,',� 77.25 10.'§'' 0 9 ; 13.1 47 6' 0.44 132 .z 0 34 2 00 0.45 320, ; 2x10 14:7., 1.1 150' 9.25 13 9, 21.4 98 9 E 0.54 397M 0 32 p 100 0.48 365 I _ 2x12 l7 0 1_0 150 11.25 ",' 16 9 31.6 178 0 0.62 Z b5 0 31 x'100 0.49 421 2x14 19.0 0.9 1. 0 13 25 43.9 290 8 0.70 3 31, x' 0.29 =100 0.46 493 mcheson center 2x6 110 ; ' j 1.3 ,`150 5.50 j 8 3 { 7.6 .20.8! 0.22 0:82 0.22 "1TOQ,r „''j 0.53 24b. rr == _ 2x8 "! - -1.2 150 7.25 13.1 47, ii ,, 0.28 1322, x 0.21 3 .;100 0.60 2x10 16 9 ;, 1.1 i 1' S0 9 25 13 9 21.4 98 4;, 0.34 2 973: 0 20 100 0.64 `316 2x12 19 6. 1.0 j 150 ' 1 11.25 16 9 31.6 178 Or 0.39 s 2`653 0.19 F100 : 0.65 364 2x14 ( „ 219_ ;,; 0.9 x150 , ;. 13.25 i 'r 19 9, 43.9 240,8 0.44 3 312, ; 0.1 8 1, 00 0.62 427 Ilil IIIHIIIlIIIIIHIIIII�I TYPICAL FLOOR GIRDER DESIGN DF No.l,,; RppFL0AD5 gar ,x DESIGN CRlTER1A Fb= 1000 psi Fv= 180 1 psi E= j 1.70 , msi DL= psf LL psf LDF = S =L/ Cr 3, �� + FLOOR GIRDER SPAN TABLE Size b d Ax Sx Ix Vx Size Max L {ft) ; factor (in). .I (in) (tn2)..1.� (in3J (In°j.; (kip) {k:ft)w ;: Vx/Va t41x /Ma (in) ratio, :1 ;; Tributary width= $ ft 96 inches 4x6 1.3 1 3;50, ,'� 5.50 i' 19.3 17.6 48 5,:.:_ 1.30 19i 0.56 ! 4Y;100 ,I 0.14 488 4x8 (' 7 8 1.3 j _ 3:50 7.25 (. Z5., ': 30.7 1111 3 1.71 x:32, 0 56 1 D0. ' 0.19 488 .: 4x10 9 S ! 1 1.2 3:50 " 9.25 32 4 49.9 230 $ ..j 2.10 4 99 0 54 x100 0.21 550 6x6 1? 6 S. ! 1.0 � 5 50 30 3 27.7 76 3..; .;� 1.43 2.31 - 0 39 =100 0.13 6x8 8 5' ' ;I 1.0 5;5`6':'j 7.25 39 9' :;i 48.2 I„ 174 7 1.88 4 02y 0 39 100 0.18 Tributary width= .. "10': ft 120 inches 4x6 5 3:.: 1.3 3 50 `� 550 19 3 j 17.6 48 5 ;` 1.45 191 ^ _ 0.63 0.12 4x8 -: 7 0 .I 1.3 1 43 6 "! 7.25 25 4 .,:;ll 30.7 11i 1 '' 1.91 j 3.322, p 0 63 1013., 0.15 4x10 _ 8 5 ...,< 1.2 : 3:50 9.25 I ., 49.9 230 8 2.34 $ 991 0.60 1:00 0.17615 6x6 1' S 8 „;" 1.0 ,550 ! j 5.50 30 3 , "� 27.7 „76 3 1.59 2 311 044 100 0.11 6x8 7.6 _, j 1.0 ! �5:5� 7.25 ;: 39 9 ,;'1 48.2 174.2; 'i 2.10 4,015 0 44 - .100.. ;': 0.14 645 ROCA3 ENGINEERING Project FORM P -01 STRUCTURAL DESIGN Address Made by Date RESIDENTIAL/ COMMERCIAL JR Page No. ENGINEERING Description Checked Revision N Job No. _ POST CAPACITIES - I RO POST CAPACITY TABLE (Ibs) Height ft 2x4 wall 2x6 wall 2x4 2x6 4x4 4x6 4x8 400 4x12 6x6 6x8 3 1/2x7 PSL 4 4-,7-62 8452 1,937 3,044 8-,564 45,028 16,299 25,27-6 30,741 29,194 45,742 53;446 5 4-,2-79 7-,� _ 1,296 2,037 &,-7-09 4_ 86 15,242 23,017 27-993 29,514 44,454 48748 6 369 7-,694 74-78 919 1,445 7,595 11,936 13,794 20,073 24,414 27,696 42,691 39;646 700 15,859 4x10 7 3,04_5_ 683 1,07_4 6,399 10,055 12,067 16,911 29;56.7 26,M 40,372 23;468 8 2,501 642 527 82_8 5,309 8,342 10,306 14,030 17,063 24;841 37,481 1000 9 10 2,062 1,716 6jQ37 6,40-4 418 340 _ 657 534 4,403 6,920 8,715 11,638 14,154 23,015 34,444 14,736 PSL 3,680 5,782. 7,372 9,724 11,827 20,989 30,617 12,055 11 1,445 4,785_ 3,105 6,273 8,207 9,982 18,906 27,176 10,032 12 1,230 4,223 ----282 237 _4_43 373 2_,649 _4,880 4,162 5,379 7,000 8,513 16,902 1 24,014 8,473 13 1,058 3,726 _ 2,281 3,585 4,651 6,030 7,333 15,061 21,213 7,248 14 919 3,297 _202_ 175 _318_ 1,983 3,117 4,055 5,242 6,376 13,421 18,781 6,268 15 806 2,928_ 152 _274 239 2,733 3,563 4,596 5,590 11,984 16,689 5,474 16 711 2,612 _ 134_ 210 _1,739 1,536 2,414 3,153 4,060 4,938 10,734 14,895 4,820 17 _ 632 2,341 119---.--187 _ 1,366 2,147 2,808 3,611 4,392 9,650 13,354 4,276 18 566 2,108 166 1,223 1,922 2,515 3,232 3,931 8,710 12,027 3,820 19 509 1,906 _106 95 149 1,101 2,266 2,909 3,538 7,892 10,879 3,432 20 460 1,731 _ 86 135 996 _1_,730 1,565 2,051 2,631 3,200 7,179 9,882 3,100 Post Capacity .31281 5,156 3,281 1 5,156 7,656 1 12,031 15,859 20,234 24,609 18,906 25,781 18,375 Post Pronerties post size b in d in grade Fc -L psi Fc // psi E x Fc * psi Fc -L ca Ibs 2x4 1.5 3.50 stud 625, 825 1031 3,281 2x6 1.5 5.50 stud 625 825 _1.4 1.4 1031 5,156 4x4 3.5 3.50 DF# 2 625 700 1.3 875 7,656 4x6 3.5 _ 5.50 DF# 2 625 700 1.3 875 12,031 4x8 3.5 7.25 DF# 2 700_ 1.3 700 15,859 4x10 3.5 9.25 DF# 2 _625 _ 6_25_ 1.3 875 20,234 4x12 3.5 11.25 DF# 2 625 _700 ^_700 1 -3 875 24,609 6x6 5.5 5.50_ DF# 1 625_ 1000 1.6 1000 18,906 6x8 5.5 - 7.50 DF# 1 925 1.6 25,781 31/2x7 3.5 7.00 PSL _625 750 1 2500 2.0 _1156 3125 18,375 F'c = Fe 1 +(FCE /Fc *) _ 1 +(F,E /Fc *) _ (F.E /Fc *) 2c' 1 2c' C. C, = 0.8 for sawn lumber KCE = 0.3 for visually graded lumber CF = 1.00 size factor for compression CD = 1.25 duration factor Fc* = tabulated compression design value multiplied by adjustment factors FCE = KCE E (le /d)Z ROCA3 ENGINEERING Project �/ESTRUCTURAL DESIGN Addres RESIDENTIAL/ COMMERCIAL NGINEERING I I Remarl 1. Load Capacity for continuous footin P Soil Bearing Capacity (SBC) = 1500 PSF 18 12 min.8 " All dimensions are in inches 2. Allowable Loads for Square Pad Footing FORM F -01 Made by I Date I Page No. INGLE STORY ADDITION & REMODE1 Checked I Revision No.1 Job No. No FOOTING CAPACITIES I - I RO i 3. Allowable Soil Bearinq Capacity 60 P cap= (60712) x 1 ft x SBC Pcap = 7,500 Ibs %j Member Foundation Dimensions (ft) ILL (lb /ft2) Pcap (Ibs) W n B Roof 15 20 2.00 x _ 2.00 x _t 1.00 6,000 2.50 x 2.50 x 1.00 9,375 _ 3.00 x 3.00 x 1.00 13,500 3.50 x 3.50 x 1.00 18,375 4.00 x 4.00 x 1.00 24,000 4.50 x x 1.00 _ 30,375 5.00 x _4.50 5.00 x 1.00 37,500 3. Allowable Soil Bearinq Capacity 60 P cap= (60712) x 1 ft x SBC Pcap = 7,500 Ibs %j Member UL (lb /ft2) ILL (lb /ft2) DIL +LL (lb /ft2) Tributary Length (ft) n q (lb /ft ) Roof 15 20 35 7 1 245 Floor 15 40 55 7 1 385 Wall 17 17 8 1 136 Footing 200 200 _ 1 1 200 Total 966 Pcap= A x SBC Min footing width req'd = q x 12" = 7.73 inches SBC i .e° e Q i Q a "« °t t, K fi 36 The new SB %x24 anchor bolt offers a load- tested anchorage solution that exceeds the capacity of all of our holdowns that call for a `/E dia. anchor. Similarly, the SB1x30 covers holdowns utilizing a 1" diameter anchor that exceed the capacity of our SSTB bolts. The SB%x24 is designed to maximize performance with minimum embedment for holdowns utilizing a %" dia. anchor. SB anchor bolts are now code listed by ICC -ES under the 2006 and 2009 IBC and IRC to meet the requirements of [CC-ES acceptance criteria - AC 399. ICC -ES ESR -2611 is the industry's first code report issued for proprietary anchor bolts evaluated to the criteria of AC 399. Special Features: • Indentification on the bolt head showing embedment angle and model • Sweep geometry to optimize position in form • Rolled thread for higher tensile capacity • Hex nuts and plate washer fixed in position • Available in HDG for additional corrosion resistance MATERIAL: ASTM F -1554, Grade 36 FINISH: None. May be ordered HOG. Contact Simpson Strong -Tie. INSTALLATION: • SB is only for concrete applications poured monolithically. • Top nuts and washers for holdown attachment are not supplied with the SB; install standard nuts, couplers and /or washers as required. • On HOG SB anchors, chase the threads to use standard nuts or couplers or use overtapped products in accordance with ASTM A563, for example Simpson Strong-Tie- NUT5/8 -OST, NUT7 /8 -OST and NUT1 -OST. • Install SB before the concrete pour using AnchorMatesa. Install the SB per the plan view detail. • Minimum concrete compressive strength is 2500 psi. • When rebar is required it does not need to be tied to the SS. CODES: See page 20 for Code Reference Key Chart. These products are available with additional corrosion protection. Additional products on this page may also be atedable with this option, check with Simpson Strong -Tie for details. SB Bolts at Stemwall SB%x24 i 6 % 24 18 6675 6675 6675 I 6675 5730 5730 1231 SB %x24 j 8 Me 24 18 10470 9355 6820 1 8795 7855 5730 1 F30, SB1x30 8 1 30 24 13665 9905 7220 1 11470 7 8315 11-6065 1 L20 1. See page 37 for notes to the Designer. d`4 Rebar 3 "to 5' 4 0 x� N L Locate 4 a approx.45 foundation to 90° from wall rebar) �! — Ni i W a ; Midwall a Place Se arrow diagonal in can application iu i d6'Mia return - 1, 414' Min. (SB /. and %) 5"Min.(S81) �� 135'Min. Corner STEMWALL PLAN VIEWS Corner Installation (Install with arrow on top of the bolt oriented as shown) 45° eo mchchor _801t jA (TIT -) 0° Over Edge cf 5{ 11� 5 Non - Corner Installation (Bolt may be installed 4 45° to 1350 as shown) 135o/90'/45- 45 d5° 0° ;Onrrle gyp.).— .._.____...._._ Corner Installation (Install with arrow on top of the bolt oriented as shown) 135° SIMPSON 6° (standard on all models) S81 x30 (Other models similar) 19/: Min. Edge Distance Embedment Line -.i Ff- /_ (Top of concrete) Typical SB Installation 6 Plan View of SB Placement in Concrete Perspective View 44 rebar T-5' from top 3 "to 5' 4 : le #4 rebar may be foundation rebar) Footing i W Typical SB Installation 6 Plan View of SB Placement in Concrete Perspective View 44 rebar T-5' from top Anchor Calculations Anchor Selector (Version 4.3 -0.0) Jab Name: LiDU5f HDL12 EPDXY HOLOO VAN 1) Input Calculatiooa Method - ACI 318 Appendix D Foe Cracked Concrete Ca; culatwn T',;,,,- : Ana ysfs a) Layout Anchor: 5x'8" SET -XP Nu, ber of Anchors Steel Grade. AZ07 GR. C E^:Uec nent Dept- . i c in Built -.up Grout Pads: No a n - 'd: r t i t F( INC:-OP Anchor Layout Dix eRsfons : cx; :1.73 in Cx2 18 in ,_ lsin �} g i Page 1 of 5 DA_M,T7nn°' &`23120111 !0 7' 0'' 7 b) Base Material Concrete : Norma[ weight Cracked Concrete . Yes Condition . B tension ana shear TiNckress . h : 30 in f ✓ — ro0 Supplemsntary edge reinforcement: No Hole Condition Dry Concrete f GC- 6t Inspection . Continuous J rJ —� Temperature Range ; 3 (Maximum 110 OF wort term:and 75 aF longterm temp.) c) Factored Loads q— 1 fc : 2500.:0 psi osG : 1381.3 psi JAS(, VL�ax :'0 lb Mux :'0 tb "R. Load factor source. ACI 318 Append-ix C -A y a : "x850 Ib r ' V.uay : 0 lb [✓'y : 01WIt ex : V in 2,x:01!^ %ttOdef2t8iF3[gl''1 _s Mc risk or internediaiethtgb cesxg^ c3t�gcry :Yes. Anchor w.r sustained tension : No 1 fc : 2500.:0 psi osG : 1381.3 psi JAS(, VL�ax :'0 lb Mux :'0 tb "R. Page 2 of 5 A-4 Anchors only resist wind ardor seismic scads : N Apply entire shear load at front row for breakout. No d) Anchor Parameters From (C-SAS-4^4^ )Mi : Anchor Mcdel = SETXP do = 0.625 ir, Category = 1 hef = 12 in hmin = 15.125 in czc = 36 in c;n;,; = 1.75 in s';r, = 3 in Ductile = Yes 2) Tension Force on Each Individual Anchor Anchor #1 Nua I = 3850.00 Ib Sum of Anchor Tension; I-N,, = 385-0.0020 e'Nx = 0.00 in 6'Ny =0.00 in 3) Shear Force on Each Individual Anchor Resultant shear forces in each anchor. Anchor #1 V,at = 0.00 lb (1f;,3 ;x = 0.00 1,3 . Waty. = O.sO Ib Sum of Anchor Shear _11,,x = 0.00 ib. `_Vuay = 0.00 1,o e'ux = 0.00 in 0.00 in 4) Steel Strength of Anchor in Tension [Sec. 0.5.11 Nsa = nAs6f,ra [Eq. D -31 Number of anchors acting in tension, n = i Nsa = 13110 Ib (for a single anchor) (C- SAS -2009] o = 0.80 [DA.51 6Nsy = 10488.00!b (for a single anchor) Ale A 5) Concrete Breakout Strength of Anchor in Tension [Sec. D.5.2) q� Nc5 = A.NrA Jco (ed, J'( c;N } cp.nNb [Eq D -4] J+ Lt'C{ J?O -+%� Number of inluencing edges = 2 hef = 12 in _ 1,72 ANc = 1296.00 in2 [Eq. M) ANC = 345.60 in2 Smallest edge distance. ca r;n = 1.75 in 'P,,-d.N = 0.7292 [Eq. D-10 or D -111 Note: Cracking shall be controlled per D.5.2.6 'I'c.N = 1.0000 ;Sec. 0.52.61 'k'cp,N = 1.00000 [Eq. 0 -12 or 0-13j NS = kc- .f ' c * 5 = 35333..2-= lb 1,;=q. D -71 kc = 17 (Sec. D.5.2.61 t'Icb = 6870.47 lb [Eq. D-41 o = 0.75 [DA.5) 'seis = 0.75 5Nq = 3864 64 ".b (for a single anchor) 6) Adhesive Strength of Anchor in Tension [Sec. D.5.3 (AC308 Sec.3.3)] = 718 psi [C- SAS -2009; ku = 1,7 !C-SAS-2009) hef (unadjusted) = 12: in Nao ° .k.c = d-h, = 1691,7.48 1t, [Eq. D -16t; Page 3 of 5 :k,,Icl z 2283M psi for use in (Eq. 0-1 5d] Scr,Na = min[20d, V ('Ck,,,,a1450) t 3h,.) = 1&610 in [Eq. D-1 6d] 8c-.Na%2 = 7,308 in (F-o,. 0-16e! No = ANafANao']'eC.Na tEq. D-1 ea] AN,O = 243.86 in2 (Eq, D-116c1 AN, = 14S.26 m2 Smstlest edge dil-",amiel in 0.7672 [Eq- 0-16nn! 4'p N's OOGG [sec. 0.5.3.141 N_ = 79 ,14. 11 b i�Eq. D -162] q = 0.75 [C-SAS-2009] Ose:s = 0-75 s�Na = 4468.75 lb (for a single anc?1.&) 7) Side Face Blowout of Anchor in Tension (Sec. 0.5.4) Concrete side face blow-cut strength is only caiculat,&5' for htaade-o anchors in tension c;ose m an eoget.ca,, < 0.4hef. Not.appiisab.le in this case. 8) Steel Strength of Anchor in Shear (Sec 0.6.11 V,a = 7&65.0010 (fcr a sinale anchor) Veo vsa�V. se:s [AC308 Eq. i -271, "v'se, -S = 0.71 [C- SAS - 2063) Vey = 55 &.15 lb v =.0.75 (D. 4. 5] �.,.Veq = 4188;11 lb for a single anchor) 9) Concrete Breakout Strength of *Anchor in Shear [Sec D.6.2] Case I Anchor checked against lotal shear load In x-direction- VCbx = Av�,Avcox'Ved VW-,',,VLx [Eq. D-2 V ca; = 7.85 in A-,,, = 277,30 in' A„cX = 277.30 'M2 [Eq. D-231 Yed'V = 1.0000 [Eq. D-27 or D-28] 111b.V = 11.0000 fSec. D.6.2.7] Vb, = 7(idd U,2V d- N" ;Eq. D-241 ie 5,00 in V,Ox = 9224,24 lb V,b), = 9224.24 lb [Eq. D-211 u = 0.75 0-75 6V�x = 5188.03 ib (for a singile anchor) In Y-direction... VCby = [Eq.. D-21] C-.1 = 18.00 in A,,,,r = 259-20 in2 Avcol.' = 1458.00 in2 tEq. D-21 q'edx = rj. -i 194 [Eq, D-27 o,- D-28] [Sec. D.5.2.7] Vby 70,.(q,)0.2V d, N [Eq. 0-241 le = 5M in Page 4 of 5 Vby = 32028.37 lb Vcby = 4098.47 9b [Eq. D-21] 0 = 0.75 090„ =0.r5 W^b, = 2304.26 lb (for a single anchor) Case 2i This case does not app €y to single anc^or?ayoui Case 3: Anchor checked ;or parallel to edge condition Check anchors at cx; edge Ucbx ° u c/f+vax` ='e,.V`4`,4 vVbx [E^. D-21 cg! = 1.77 in A�,,cx = 13.78 F*.cox = 13.78 in2 [Eq. D -231 q'eri V - 11. MO [Sec. D,8.2, { (c)l , ?c.v = 1.0000 [Sec. D.6,21i Vbx = 7(Vdc) 2 '4i d;'V °r;ca; [Eq. D-24i le = 5.00 in Vbx = 970.92 lb V ,bx = 970..92 lb (Eq, D -21 ] Vcby 2 Vcbx sSec. 0.6.2.1(cA Vcby = 1941.84 lb q:= 0.75 �se:s = 0.75 Vrcy = 1082.28 Ib (for a single anchor) Check anchors at cy, edge Vctsy = Akcylk ccy`l1ec.V`t'c.vVb; (Ec. rJ -21] c, = 18.00 in Avcy = 259.20 in2 A„coy = 1458.00 i112 [Eq. D-231 ea,v = 1 :OC-MO Sec D,6.2:1(c;i ``'d .'V = 1.COCO [Sec. D.6.2.71 t py= 7(jetdc)GI d,N fc(c,:)115 [Eq, D-241 Ic = 5.00 in Vby = 32028.37 la V,ey = 5693.93 Ib [Eq, D -21 ] Vcbx = 2 Vc y [Sec, D.5.2.1(6)1 Vcbx. 11387.36" Ib = 0.77 use s = 075 6Vcbx = 5405.67 it (foo- a sines anchor) Check anogorS at Cx2 edge Vc?sx = Avcx/Avti^ox`l'ed,V`l'r 'VV [-Eq. D-21 a; _7,85 in Aycx = 2777,30 in2 Avcax = 277.30 in2'[Ec. D -231 F'ed.v = 1. aC00 (Eq. D-27 or D-2841 [Sec. D,61.1(c)] `i'c V = 1.000 [Sec. D.6.2.7 Vt, = 7(IerdD)o.21' d f':.5 (Eq, D -24) �> ='5.00 in Page 5 of 5 V,, = 5224.24 td Vcbx = 922414 ib [Eq. D-21 j Vc .y = 2 ' V Sx [Sec. D.6.2.1 (c)1 Vim ;y = 13448.48 ib =0 -75 Gsei, = 0.75 V,bv = 10377.27 Ib ;for a single antor) Check anc; ors at cy2 edge Vcbv = tivcyr%{v�y`' eo.v`i'c.t,Vb , [Eq. D-211 ca; = 18.00 in 259.20 ir.2 Ar:ay = 1453.00 in2 [Eq. D -231 T.d.V= i.0200[SeC. D.5,2,1iC;! 00000 [Sec. D.5.2 71 Vcy = 7(IE'db"01.2 N do %. Qc(ca i' [Eq_ D -241 1z, =5:00 in Vby =32023,37 lb Vcby = 5693.93 ib (Eq. D -211 Vcbx = 2 - VCbJ ISec, 13.6.2.1(0) V ,bx = < 1387.86 lb p.= 0.75 Useis = 0:75 GVcbx = 6405.67 ib !for a single anchor't 10) Concrete Prybut Strength of anchor in Shear [Sec. 0.6.31 V�„ = rn n[k.�NL;kCpNb € [Eq. D- Dal k6 = 2 ;Sec. 0.6.3.21 N' = 794.4.45 ib (from Section (6) of calcuiauons) N,,y = 6870.47 ro (from Section (5) of calculations; Vcp =1374.D,94 Ib G.75 [13.4.51 �seis ° 0.75 Wcp = 7729.28 lb ;for a single anchor) 11) Check DemandlCapacity Ratios [Sec. D.71 Tension - Steel: 0.3671 - Breakout 0.9962 - Adnesive 0.8615 - Sideface Blowout : N/A Shear Steel : 0.0000 Breakout (case 1):0.0000 Breakout(case 2) : WA Breakout (case 3) : 0.0000 Prvout : 0.0000 V.fviax(0) — 0.2 and T.Max(1) <= 1.0 [Sec 0.71] Interaction check: PASS Use 518" diameter A307 GR. C SET -XP anchor(s) with 12 in. embedment BRITTLE FAILURE GOVERNS: Governing anchor failure mode is brittle failure. Per 2006 IBC Section 19981.16. anchors shall be governed, by a duc-tiie sal element in structures assigned to Se snc Design Category C. D, E. or F. Ait9rnatively E se ¢ t: Imurr design strength gf the anchor s) steal; be at isast 2.5 tirnasthe factored forces or the andricr aqa .mart to ine strums a snai undergo doodle y etd'ing at a load level less than E,ne dESign strength. df the anchor (s), - JSStgnSf r StteCle Odn t0e r 2 i to det"rRine It this LESIgn IS S It'Ge.g c SEA Design Maps Summary Report Design Maps Summary Report User - Specified Input Report Title 10395 FARALLONE DRIVE, CIIPERTINO, CA Sun July 27, 2014 01:40:15 UTC Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available in 2008) Site Coordinates 37.31742 0N, 122.02722 °W Site Soil Classification Site Class D — "Stiff Soil" Risk Category I /II /III USGS— Provided Output SS = 1.871 g S,,s = 1.871 g Sos = 1.247 g Si = 0.700 g SMI = 1.050 g Sol = 0.700 g For information on how the SS and S1 values above have been calculated from probabilistic (risk - targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the °2009 NEHRP" building code reference document. - MCEn Response Spectrum $.50 3 L14 H 0.55 0:76 (- 0:.00. G:30 Q.O '0.60 Q. ^o0 'a.QO 1.2J 1. #Q I.SO Piir6 1, T (spec) ©.esign R€sponseSpecttsim 1.17 l.aa d9I Qr.6' 3.50 rl.QO. G. 7 #A tR6Q. q,Bi7 :2:A0 1.= L40: 'Pe' T.(.m4 http: / /ehp 1- earthquake .cr.usgs.gov /designmaps /us /summary.php?templateminimal &latitu... 7/26/2014 CUPERTIN0 PURPOSE: CALGREEN RESIDENTIAL CHECKLIST — MANDATORY ITEMS COMMUNITY DEVELOPMENT DEPARTMENT • BUILDING DIVISION ALBERT SALVADOR, P.E., C.B.O., BUILDING OFFICIAL 10300 TORRE AVENUE • CUPERTINO, CA 95014 -3255 (408) 777 -3228 • FAX (408) 777 -3333 • buildinaOlcupertino.org The 2013 CalGreen Code applies to all newly constructed hotels, motels, lodging houses, dwellings, dormitories, condominiums, shelters, congregate residences, employee housing, factory-built housing and other types of swellings with sleeping accommodations and new accessory buildings associated with such uses. Existing site and landscaping improvements that are not otherwise disturbed are not subject to the requirements of CALGreen. Project Name: Project Address: CUPERTNO Gan a Residence Building Department 10395 Farallone Drive `� ' _AP0 n-7 711199 Project Description: Remodel & Addition meviewco 13y iJs� Instructions: 1. The Owner or the Owner's agent shall employ a licensed professional experienced with the California Green Building Standards Codes to verify and assure that all required work described herein is properly planned and implemented in the project. 2. The licensed professional, in collaboration with the owner and the design professional shall initial Column 2 of this checklist, sign and date Section 1 - Design Verification at the end of this checklist and have the checklist printed on the approved plans for the project. 3. Prior to final inspection by the Building Department, the licensed professional shall complete Column 3 and sign and date Section 2 - Implementation Verification at the end of this checklist and submit the completed form to the Building Inspector. !- Column 2 Column 3 MANDATORY JTURE OR E Project Verification Requirements Planning and Design - Site Development 4.106.2 Storm water drainage and retention during construction. A plan is developed and implemented to manage storm water drainage during construction. 4.106.3 Grading and paving. The site shall be planned and developed to keep surface water away from buildings. Construction plans shall indicate how site grading or a drainage system will manage all surface water flows. Page 1 of 5 copy ffi�MIWW CalGreen 2014.doc revised 01115114 A4.2 General 4.201.1 Low -rise residential buildings shall meet or exceed the minimum ❑ standard design required by the California Energy Standards. A4.3 WATER EFFICIENCY AND CONSERVATION Indoor Water Use 4.303.1 Water conserving plumbing fixtures and fittings. Plumbing fixtures (water closets and urinals) and fittings (faucets and showerheads) shall comply with the following: 0 4.303.1.3.2 Water Closets. The effective flush volume of all water closets shall not exceed 1.28 gallons per flush. Tank -type water closets shall be certified to the performance criteria of the U.S. EPA WaterSense Specifications for Tank -type Toilets. ❑ 4.303.1.3.2 Urinals. The effective flush volume of urinals shall not exceed 0.5 gallons per flush. Z 4.303.1.3.1 Single Showerheads. Showerheads shall have a maximum flow rate of not more than 2.0 gallons per minute at 80 psi. Showerheads shall be certified to the performance criteria of the U.S. EPA WaterSense Specification for showerheads. ❑ 4.303.1.3.2 Multiple Showerheads serving one shower. When a shower is served by more than one showerhead, the combined flow rate of all showerheads and /or other shower outlets controlled by a single valve shall not exceed 2.0 gallons per minute at 80 psi, or the shower shall be LIS designed to allow only one shower outlet to be in operation at a time. 0 4.303.1.4.1 Residential lavatory faucets. The maximum flow rate of residential lavatory faucets shall not exceed 1.5 gallons per minute at 60 psi. The minimum flow rate of residential lavatory faucets shall not be less than 0.8 gallons per minute at 20 psi. ❑ 4.303.1.3.2 Lavatory faucets in common and public use areas. The maximum flow rate of lavatory faucets installed in common and public use areas (outside of dwellings or sleeping units) in residential buildings shall not exceed 0.5 gallons per minute at 60 psi. ❑ 4.303.1.4.3 Metering faucets. Metering faucets when installed in residential buildings shall not deliver more than 0.25 gallons per cycle. 0 4.303.1.4.4 Kitchen Faucets. The maximum flow rate of kitchen faucets shall not exceed 1.8 gallons per minute at 60 psi. Kitchen faucets may temporarily increase the flow above the maximum rate, but not to exceed 2.2 gallons per minute at 60 psi, and must default to a maximum flow rate of 1.8 gallons per minute at 60 psi. 4.303.2 Standards for plumbing fixtures and fittings. Plumbing fixtures and fittings shall be installed in accordance with the California Plumbing Code, © El and shall meet the applicable standards referenced in Table 1401.1 of the California Plumbing Code. Page 2 of 5 CalGreen 2014.doc revised 01/15114 Outdoor Water Use 4.304.1 Irrigation controllers. Automatic irrigation systems installed at the time of final inspection shall be weather- based. ❑ 4.304.1.1 Controllers shall be weather- or soil moisture -based controllers that automatically adjust irrigation in response to changes in plants' needs as weather conditions change. ❑ 4.304.1.2 Weather -based controllers without integral rain sensors or communication systems that account for local rainfall shall have a separate wired or wireless rain sensor which connects or communicated with the controller(s). Soil moisture -based controllers are not required to have rain sensor input. A4.4 • - • N AND RESOUR Enhanced Durability and Reduced Maintenance 4.406.1 Rodent proofing. Annular spaces around pipes, electric cables, conduits, or other openings in plates at exterior walls shall be protected against the passage of rodents by closing such openings with cement mortar, concrete masonry or similar method acceptable to the enforcing agency. Construction Waste Reduction, Disposal and Recycling 4.408.2 Construction waste management plan. Where a local jurisdiction does not have a construction and demolition waste management ordinance, a construction waste management plan shall be submitted for approval to the enforcing agency. Building Maintenance and Operation 4.410.1 Operation and maintenance manual. At the time of final inspection, an operation and maintenance manual shall be provided to the building LCJ occupant or owner. A4.5 ENVIRONMENTAL QUALITY Fireplaces 4.503.1 General. Install only a direct -vent sealed- combustion gas or sealed ® ❑ wood - burning fireplace, or a sealed woodstove. Pollutant Control 4.504.1 Covering of duct openings and protection of mechanical equipment during construction. Duct openings and other related air 0 E] distribution component openings shall be covered during construction. 4.504.2.1 Adhesives, sealants and caulks. Adhesives, sealants and caulks ❑ shall be compliant with VOC and other toxic compound limits. 4.504.2.2 Paints and coatings. Paints, stains and other coatings shall be 177101 ❑ compliant with VOC limits. 4.504.2.3 Aerosol paints and coatings. Aerosol paints and other coatings shall be compliant with product weighted MIR Limits for ROC and other toxic 0 compounds. Page 3 of 5 CalGreen 2014.doc revised 01 /15114 4.504.2.4 Verification. Documentation shall be provided to verify that ® ❑ compliant VOC limit finish materials have been used. 4.504.3 Carpet Systems. Carpet and carpet systems shall be compliant with ❑ VOC limits. 4.504.4 Resilient flooring systems. Eighty (80) percent of floor area receiving resilient flooring shall comply with the VOC- emission limits defined in the Collaborative for High Performance Schools (CHPS) Low - emitting ® ❑ Materials List or be certified under the Resilient Floor Covering Institute (RCFI) FloorScore program. 4.504.5 Composite wood products. Particleboard, medium density fiberboard (MDF), and hardwood plywood used in interior finish systems shall ® ❑ comply with low formaldehyde emission standards. Interior Moisture Control 4.505.2 Concrete slab foundation. Required vapor retarders and capillary ❑ ❑ breaks are also required to comply with CalGreen Section 4.505.2.1. 4.505.3 Moisture content of building materials. Moisture content of building ® E] materials used in wall and floor framing is checked before enclosure. Indoor Air Quality and Exhaust 4.506.1 Bathroom exhaust fans. Exhaust fans which terminate outside the E] building are provided in every bathroom. Environmental Comfort 4.507.2. Duct systems are sized and designed and equipment is selected using the following methods_ 1. Establish heat loss and heat gain values according to ACCA Manual J or equivalent. © ❑ 2. Size duct systems according to ACCA 29 -D (Manual D) or equivalent. 3. Select heating and cooling equipment according to ACCA 36 -S (Manual S) or equivalent. INSTALLER AND SPECIAL INSPECTOR QUALIFICATIONS Qualifications 702.1 Installer training. HVAC system installers are trained and certified in © ❑ the proper installation of HVAC systems. 702.2 Special inspection. The Licensed Professional responsible to verify CALGreen compliance is qualified and able to demonstrate competence in the © ❑ discipline they inspect and verify. Verifications 703.1 Documentation. Verification of compliance with CALGreen may include construction documents, plans, specifications, builder or installer certification, inspection reports, or other methods acceptable to the enforcing ❑ agency which show substantial conformance. Implementation verification shall be submitted to the Building Department after implementation of all required measures and prior to final inspection approval. Page 4 of 5 CalGreen 2014.doc revised 01115114 CALGREEN SIGNATURE DECLARATIONS Project Name: Ganga Residence Project Address: 10395 Farallone Drive Project Description: Remodel & Addition SECTION 1 - DESIGN VERIFICATION Complete all lines of Section 1 -"Design Verification" and submit the completed checklist (Columns 1 and 2) with the plans and building permit application to the Building Department. The owner and design professional responsible for compliance with CalGreen Standards have revised the plans and certify that the items checked above are hereby incorporated into the project plans and will be implemented into the project in accordance with the requirements set forth in the 2013 California Green Building Standards Code as adopted by City of Cupertino. n.,A�! Owner's Sirgnatture/� f Date �IiC��7V • �iV�l1' Y y� Owner's Namq (Pi se Print) 02/12/2015 Signature Date DE01i4i rofe nal's N (Please Print) 08/24/2014 Signature of License rrofessional responsible for CalGreen compliance Date Miles Hancock (650) 424 -1189 Name of License Professional responsible for CalGreen compliance (Please Print) Phone energy @pacbell.net Email Address for License Professional responsible for CalGreen compliance SECTION 2 - IMPLEMENTATION VERIFICATION Complete, sign and submit the competed checklist, including column 3, together with all original signatures on Section 2 to the Building Department prior to Building Department final inspection. I have inspected the work and have received sufficient documentation to verify and certify that the project identified above was constructed in accordance with this Green Building Checklist and in accordance with the requirements of the 2013 California Green Building Standards Code as adopted by the City of Cupertino. Signature of License Professional responsible for CalGreen compliance Date Miles Hancock (650) 424 -1189 Name of License Professional responsible for CalGreen compliance (Please Print) Phone energy @pacbell.net Email Address for License Professional responsible for CalGreen compliance Page 5 of 5 CalGreen-2014. doc revised 01115114 ti Rt"3 ROCA3 ENGINEERING STRUCTURAL DESIGN ENGINEERING 1250 Ames Avenue Suite 109, Milpitas, CA 95035 Phone: (408) 821 -1335 Fax: (408) 825.2333 August 13, 2015 City of Cupertino Building Inspection Division 10300 Torre Avenue Cupertino, CA 95014 Subject: Epoxy Holdown Inspection Project Address: 10395 Farallone Drive, Cupertino, Ca To Whom It May Concern: )�o 3 D/« e -mail: Roca3 @ymail.com Proiect No. 316.070314 Please accept this letter as our certification that we have made a field review of the following item /s and found them to be in accordance with the overall structural design. 1. Installation of fiver (5) 5/8 inch diameter retrofit anchors for Simpson holdowns with 'SET -XP' epoxy located at the living room and bedroom 2 areas. Our certification was based on a visual inspection of the construction, as it existed at the time of our inspection. The inspection was made to verify compliance with the basic parameters of the design. -rhe information and opinions contained herein are based upon the limited observation described at the beginning of this report. No warranties are expressed or implied regarding the existence of other unknown conditions not specifically addressed. Our work is in accordance with generally accepted engineering standards and is not intended to be relied upon or transferred to individuals other than the addressee. Should information or conditions become known which differ from the discussion herein, they may alter the opinions or conclusions of the undersigned. Sincerely yours, t Joey G. Roca III, PE Principal Q�,,pFESSIp�� G. RD ` Fti W m No. 71615 X Exp.12 -31 -15 s� CIVIL TFOF CA''.k � i:A3 Engineering Page 1 �Z ROCA3 ENGINEERING J STRUCTURAL DESIGN ENGINEERING 1250 Ames Avenue Suite 109, Milpitas, CA 95035 Phone: (408) 821 -1335 Fax: (408) 825 -2333 e-mail.- Roca3 @ymail.com August 13, 2015 Proiect No. 316.070314 City of Cupertino Building Inspection Division 10300 Torre Avenue Cupertino, CA 95014 Subject: Framing Inspection Project Address: 10395 Farallone Drive, Cupertino, Ca To Whom It May Concern: Please accept this letter as our certification that we have made a field review of the basic wood framing construction for the building as referenced above. At the time of our framing visit, the plywood for the subfloor and roof were already installed, thereby concealing the structural elements beneath these areas. We performed visual observation of the remaining visible portions. The wood framing, joist, beams, columns and shear wall observed by us were found to be in accordance with the overall structural design. Our certification was based on a visual inspection of the construction, as it existed at the time of our inspection. The inspection was made to verify compliance with the basic parameters of the design. The information and opinions contained herein are based upon the limited observation described at the beginning of this report. No warranties are expressed or implied regarding the existence of other unknown conditions not specifically addressed. Our work is in accordance with generally accepted engineering standards and is not intended to be relied upon or transferred to individuals other than the addressee. Should information or conditions become known which differ from the discussion herein, they may alter the opinions or conclusions of the undersigned. Sincerely yours, Joey G. Roca III, PE Principal 9 OFESSI G. RO r Fti it No. 71615 Exp.12 -31 -15 s� CIVIL ,OF C4L_ F Rae.-.3 Engineering Page 1 1 N SIGNATURE DECLARATIONS Project Name: / s5imal Project Address: Project Description. SECTION 1 - DESIGN VERIFICATION Complete all lines of Section 1 —"Design Verification" and submit the completed checklist (Columns 1 and 2) with the plans and building permit application to the Building Department. The owner and design professional responsible for compliance with CalGreen Standards have revised the plans and certify that the items checked above are hereby incorporated into the project plans and will be implemented into the project in accordance with the requirements set forth in the 2013 California Green Building Standards Code as adopted,bKthe City of Cupertino. Signature Date Owner's 12 -10 -1 Date Design Professional's Name (Please Print) Signature of License Professional responsible for CalGreen compliance Date Name of License Professional responsible for CalGreen compliance (Please Print) Phone Email Address for License Professional responsible for CalGreen compliance SECTION 2 - IMPLEMENTATION VERIFICATION Complete, sign and submit the competed checklist, including column 3, together with all original signatures on Section 2 to the Building Department prior to Building Department final inspection. I have inspected the work and have received sufficient documentation to verify and certify that the project identified above was constructed in rdance with this Green Building Checklist and in accordance with the requirements of the 2013 California Gr *n dina Standards Code as adopted by the City of Cupertino. Signature of License P of ssional( M- ssponsible for CalGreen compliance Date Mu ,� 0AI11 '409., Name of License Professional responsible for CalGreen compliance (Please Print) Phone os_bQ'n CB Rr%1Nh 1.0e,M Email Address for License Professional ?6sponsible for CalGreen compliance Page 5 of 5 5 CalGreen 2014.doc revised 11104114