Loading...
417717 SF_CUPER023 Activation Report 05172019Activation Report • Verizon Wireless Small Cell No. 417717 “SF_CUPER023” 20011 Bollinger Road • Cupertino, California H6GK Page 1 of 3 ©2019 Statement of Hammett & Edison, Inc., Consulting Engineers The firm of Hammett & Edison, Inc., Consulting Engineers, has been retained on behalf of Verizon Wireless, a personal wireless telecommunications carrier, to evaluate its small cell No. 417717 “SF_CUPER023” in Cupertino, California, for compliance with appropriate guidelines limiting human exposure to radio frequency (“RF”) electromagnetic fields. Executive Summary Verizon had installed a cylindrical antenna above the light pole sited in the public right-of- way near 20011 Bollinger Road in Cupertino. All exposure levels under the existing conditions for anyone in publicly accessible areas nearby were well below the federal standard. Prevailing Exposure Standards The U.S. Congress requires that the Federal Communications Commission (“FCC”) evaluate its actions for possible significant impact on the environment. A summary of the FCC’s exposure limits is shown in Figure 1. These limits apply for continuous exposures and are intended to provide a prudent margin of safety for all persons, regardless of age, gender, size, or health. The most restrictive limit for exposures of unlimited duration at several wireless service bands are as follows: Transmit “Uncontrolled” Occupational Limit Wireless Service Band Frequency Public Limit (5 times Public) Microwave (point-to-point) 1–80 GHz 1.0 mW/cm2 5.0 mW/cm2 Millimeter-wave 24–47 1.0 5.0 Part 15 (WiFi & other unlicensed) 2–6 1.0 5.0 BRS (Broadband Radio) 2,490 MHz 1.0 5.0 WCS (Wireless Communication) 2,305 1.0 5.0 AWS (Advanced Wireless) 2,110 1.0 5.0 PCS (Personal Communication) 1,930 1.0 5.0 Cellular 869 0.58 2.9 SMR (Specialized Mobile Radio) 854 0.57 2.85 700 MHz 716 0.48 2.4 [most restrictive frequency range] 30–300 0.20 1.0 General Facility Requirements Small cells typically consist of two distinct parts: the electronic transceivers (also called “radios” or “channels”) that are connected to the traditional wired telephone lines, and the passive antennas that send the wireless signals created by the radios out to be received by individual subscriber units. The radios are typically mounted on the support pole or placed in a cabinet at ground level, and they are connected to the antennas by coaxial cables. Because of the short wavelength of the frequencies Activation Report • Verizon Wireless Small Cell No. 417717 “SF_CUPER023” 20011 Bollinger Road • Cupertino, California H6GK Page 2 of 3 ©2019 assigned by the FCC for wireless services, the antennas require line-of-sight paths for their signals to propagate well and so are installed at some height above ground. The antennas are designed to concentrate their energy toward the horizon, with very little energy wasted toward the sky or the ground. This means that it is generally not possible for exposure conditions to approach the maximum permissible exposure limits without being physically very near the antennas. Site Description The site at 20011 Bollinger Road in Cupertino was visited by Mr. Reed L. Hammett, a qualified field technician employed by Hammett & Edison, Inc., during normal business hours on April 30, 2019, a non-holiday weekday. Verizon had installed a cylindrical antenna about three stories above ground on top of the light pole located in the public right-of-way on the west side of South Blaney Avenue, just north of its intersection with Bollinger Road; the nearest commercial building was about 100 feet west of the pole and the nearest residential buildings about 100 feet to the east. There were observed no other wireless telecommunications base stations located at this site or nearby. Notices of testing were delivered by registered U.S. Mail to the three dwelling units within 100 feet of the antenna, located to the east, across South Blaney Avenue. All residents were contacted by phone or in person, as well, and all three declined the offer to have measurements taken within their residences. Measurement Results The measurement equipment used was a Wandel & Goltermann Type EMR-300 Radiation Meter with Type 8 and Type 18 Isotropic Electric Field Probes (Serial Nos. P-0036 and F-0034, respectively). The meter and probes were under current calibration by the manufacturers. Measurements were made from a bucket-truck at the antenna and at ground near the site. At each test point, the measurement results were compared with applicable FCC standards. The maximum power density level observed beyond 1 foot from the antenna was less than the applicable limit. The maximum power density level observed for a person at ground near the site was 0.0011 mW/cm2, which is 0.11% of the applicable public limit for the frequencies authorized for use by Verizon. No Recommended Compliance Measures Access to the antenna was restricted by its mounting location and height. Since exposure levels in publicly accessible areas were found to be below the applicable public limit, no other access controls or signs are required to meet FCC public guidelines. The operation can be considered intrinsically compliant with the FCC occupational guidelines. An explanatory sign was posted on the pole below the antenna. Activation Report • Verizon Wireless Small Cell No. 417717 “SF_CUPER023” 20011 Bollinger Road • Cupertino, California H6GK Page 3 of 3 ©2019 Conclusion Based on the information and analysis above, it is the undersigned’s professional opinion that the Verizon Wireless small cell located near 20011 Bollinger Road in Cupertino, California, as installed and operating at the time of the visit, complies with the FCC guidelines limiting public exposure to radio frequency energy and, therefore, does not for this reason cause a significant impact on the environment. Authorship The undersigned author of this statement is a qualified Professional Engineer, holding California Registration Nos. E-13026 and M-20676, which expire on June 30, 2019. This work has been carried out under his direction, and all statements are true and correct of his own knowledge except, where noted, when data has been supplied by others, which data he believes to be correct. William F. Hammett, P.E. 707/996-5200 May 17, 2019 FCC Radio Frequency Protection Guide FCC Guidelines Figure 1 Frequency (MHz) 1000 100 10 1 0.1 0.1 1 10 100 103 104 105 Occupational Exposure Public Exposure PCS CellFM PowerDensity(mW/cm2)The U.S. Congress required (1996 Telecom Act) the Federal Communications Commission (“FCC”) to adopt a nationwide human exposure standard to ensure that its licensees do not, cumulatively, have a significant impact on the environment. The FCC adopted the limits from Report No. 86, “Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields,” published in 1986 by the Congressionally chartered National Council on Radiation Protection and Measurements (“NCRP”). Separate limits apply for occupational and public exposure conditions, with the latter limits generally five times more restrictive. The more recent standard, developed by the Institute of Electrical and Electronics Engineers and approved as American National Standard ANSI/IEEE C95.1-2006, “Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” includes similar limits. These limits apply for continuous exposures from all sources and are intended to provide a prudent margin of safety for all persons, regardless of age, gender, size, or health. As shown in the table and chart below, separate limits apply for occupational and public exposure conditions, with the latter limits (in italics and/or dashed) up to five times more restrictive: Frequency Electromagnetic Fields (f is frequency of emission in MHz) Applicable Range (MHz) Electric Field Strength (V/m) Magnetic Field Strength (A/m) Equivalent Far-Field Power Density (mW/cm2) 0.3 – 1.34 614 614 1.63 1.63 100 100 1.34 – 3.0 614 823.8/ f 1.63 2.19/ f 100 180/ f2 3.0 – 30 1842/ f 823.8/ f 4.89/ f 2.19/ f 900/ f2 180/ f2 30 – 300 61.4 27.5 0.163 0.0729 1.0 0.2 300 – 1,500 3.54 f 1.59 f f /106 f /238 f/300 f/1500 1,500 – 100,000 137 61.4 0.364 0.163 5.0 1.0 Higher levels are allowed for short periods of time, such that total exposure levels averaged over six or thirty minutes, for occupational or public settings, respectively, do not exceed the limits, and higher levels also are allowed for exposures to small areas, such that the spatially averaged levels do not exceed the limits. However, neither of these allowances is incorporated in the conservative calculation formulas in the FCC Office of Engineering and Technology Bulletin No. 65 (August 1997) for projecting field levels. Hammett & Edison has built those formulas into a proprietary program that calculates, at each location on an arbitrary rectangular grid, the total expected power density from any number of individual radio sources. The program allows for the description of buildings and uneven terrain, if required to obtain more accurate projections. ©2019